Michael P Thelen, Česlovas Venclovas, Krzysztof Fidelis  Cell 

Slides:



Advertisements
Similar presentations
Conservation of Structure and Mechanism between Eukaryotic Topoisomerase I and Site-Specific Recombinases  Chonghui Cheng, Paul Kussie, Nikola Pavletich,
Advertisements

Three-Dimensional Structure of the Human DNA-PKcs/Ku70/Ku80 Complex Assembled on DNA and Its Implications for DNA DSB Repair  Laura Spagnolo, Angel Rivera-Calzada,
Volume 8, Issue 6, Pages (December 2001)
The TNF and TNF Receptor Superfamilies
Volume 8, Issue 3, Pages (September 2001)
Volume 11, Issue 6, Pages (June 2003)
The Crystal Structure of a Laminin G–like Module Reveals the Molecular Basis of α- Dystroglycan Binding to Laminins, Perlecan, and Agrin  Erhard Hohenester,
Structure of an LDLR-RAP Complex Reveals a General Mode for Ligand Recognition by Lipoprotein Receptors  Carl Fisher, Natalia Beglova, Stephen C. Blacklow 
Volume 11, Issue 2, Pages (February 2003)
Saving the Ends for Last: The Role of Pol μ in DNA End Joining
Volume 8, Issue 6, Pages (December 2001)
Volume 9, Issue 5, Pages (May 2001)
Structure Prediction: How good are we?
Debanu Das, Millie M Georgiadis  Structure 
Volume 93, Issue 4, Pages (May 1998)
Matthew L. Baker, Tao Ju, Wah Chiu  Structure 
Tom Huxford, De-Bin Huang, Shiva Malek, Gourisankar Ghosh  Cell 
Volume 108, Issue 6, Pages (March 2002)
Volume 8, Issue 2, Pages (August 2001)
Structure of the Endonuclease Domain of MutL: Unlicensed to Cut
Phosducin induces a structural change in transducin βγ
Hung-Ta Chen, Steven Hahn  Cell 
N Khazanovich, KS Bateman, M Chernaia, M Michalak, MNG James  Structure 
Crystal Structure of a Y-Family DNA Polymerase in Action
Stacy D Benson, Jaana K.H Bamford, Dennis H Bamford, Roger M Burnett 
Manfred J. Sippl, Markus Wiederstein  Structure 
Volume 28, Issue 6, Pages (December 2007)
Volume 15, Issue 3, Pages (March 2007)
Volume 12, Issue 7, Pages (April 2002)
Conserved Tetramer Junction in the Kinetochore Ndc80 Complex
Volume 11, Issue 6, Pages (June 2003)
Structure of the Cathelicidin Motif of Protegrin-3 Precursor
Danny N.P Doan, Terje Dokland  Structure 
Andrew H. Huber, W.James Nelson, William I. Weis  Cell 
Volume 90, Issue 1, Pages (July 1997)
Error-Prone DNA Polymerases
Daniel Peisach, Patricia Gee, Claudia Kent, Zhaohui Xu  Structure 
Volume 91, Issue 5, Pages (November 1997)
Martin Klumpp, Wolfgang Baumeister, Lars-Oliver Essen  Cell 
Crystallographic Analysis of the Recognition of a Nuclear Localization Signal by the Nuclear Import Factor Karyopherin α  Elena Conti, Marc Uy, Lore Leighton,
Volume 8, Issue 5, Pages (November 2001)
Volume 101, Issue 4, Pages (May 2000)
Volume 26, Issue 1, Pages e4 (January 2018)
David Jeruzalmi, Mike O'Donnell, John Kuriyan  Cell 
Structural Basis for FGF Receptor Dimerization and Activation
Volume 106, Issue 4, Pages (August 2001)
Silvia Onesti, Andrew D Miller, Peter Brick  Structure 
David Jeruzalmi, Mike O'Donnell, John Kuriyan  Cell 
Volume 5, Issue 3, Pages (March 2000)
AMPK and SNF1: Snuffing Out Stress
Jeffrey J. Wilson, Rhett A. Kovall  Cell 
Solution Structure of a TBP–TAFII230 Complex
Crystal Structure of the Human Myeloid Cell Activating Receptor TREM-1
Volume 14, Issue 6, Pages (June 2006)
Volume 91, Issue 5, Pages (November 1997)
Volume 9, Issue 2, Pages (February 2001)
The Crystal Structure of an Unusual Processivity Factor, Herpes Simplex Virus UL42, Bound to the C Terminus of Its Cognate Polymerase  Harmon J Zuccola,
Polymerases and the Replisome: Machines within Machines
Stacy D Benson, Jaana K.H Bamford, Dennis H Bamford, Roger M Burnett 
Luc Bousset, Hassan Belrhali, Joël Janin, Ronald Melki, Solange Morera 
The Crystal Structure of a Laminin G–like Module Reveals the Molecular Basis of α- Dystroglycan Binding to Laminins, Perlecan, and Agrin  Erhard Hohenester,
Structure of the Histone Acetyltransferase Hat1
Brett K. Kaiser, Matthew C. Clifton, Betty W. Shen, Barry L. Stoddard 
The Structure of T. aquaticus DNA Polymerase III Is Distinct from Eukaryotic Replicative DNA Polymerases  Scott Bailey, Richard A. Wing, Thomas A. Steitz 
Volume 7, Issue 2, Pages R19-R23 (February 1999)
The Crystal Structure of an Unusual Processivity Factor, Herpes Simplex Virus UL42, Bound to the C Terminus of Its Cognate Polymerase  Harmon J Zuccola,
Crystal Structure of Escherichia coli RNase D, an Exoribonuclease Involved in Structured RNA Processing  Yuhong Zuo, Yong Wang, Arun Malhotra  Structure 
Volume 10, Issue 7, Pages (July 2002)
Debanu Das, Millie M Georgiadis  Structure 
Volume 95, Issue 2, Pages (October 1998)
Presentation transcript:

A Sliding Clamp Model for the Rad1 Family of Cell Cycle Checkpoint Proteins  Michael P Thelen, Česlovas Venclovas, Krzysztof Fidelis  Cell  Volume 96, Issue 6, Pages 769-770 (March 1999) DOI: 10.1016/S0092-8674(00)80587-5

Figure 1 Multiple Sequence Alignment of Rad1 and PCNA Family Members Rad1 homologs include those from mouse (Mm_Rad1), fruit fly (Dm_Rad1), smut fungus (Um_Rec1), and fission yeast (Sp_Rad1). PCNA sequences are from budding yeast (Sc_PCNA), malaria parasite (Pf_PCNA), baculovirus (Ac_PCNA), and human (Hs_PCNA). Rad1 family sequence alignment with PCNA proteins relied on Rad1Mm modeling studies that used PCNASc as a structural template. 〈−>, regions removed from the Um_Rec1 and Sp_Rad1 sequences to make the alignment more compact. Short unaligned N-terminal (Mm_Rad1 and Um_Rec1) and C-terminal (Sp_Rad1) regions were also excluded. Residues conserved in more than half the sequences are colored green (identical) and blue (similar). Secondary structure of Sc_PCNA is shown as arrows (strands) and rectangles (helices); different colors represent two distinct domains. Mm_Rad1 and Sc_PCNA are 13.5% identical in the final alignment. Cell 1999 96, 769-770DOI: (10.1016/S0092-8674(00)80587-5)

Figure 2 Comparative Modeling of Rad1 and PCNA Homologs (a) Molecular structures of PCNA and β subunit of DNA polymerase III. Line segments indicate unique polypeptide chains of the DNA clamp assemblies (crystal structure PDB codes 1plq and 2pol, respectively). Coloring of the two structural domains of the PCNA monomer (yellow and orange) reflects the secondary structure assignment shown in Figure 1. Corresponding structural domains of β are shown in like colors. The sequence of these two domains was used to build models of β and β* using the PCNA template (ProsaII evaluationFigure 2B). MOLSCRIPT and Raster3D were used to generate the structural representations. (b) Evaluation of comparative modeling. Results of ProsaII structure assessments for the models of (1) Rad1Mm, (2) viral PCNAAc, a distant but highly conserved ortholog of PCNASc, (3) β, the sliding clamp subunit of DNA polymerase III (Kong et al. 1992), and (4) the crystal structure of PCNASc (Krishna et al. 1994). Green segment denotes region typically occupied by native structures of soluble globular proteins of approximately the same size as the PCNASc monomer, and red, erroneous or deliberately misfolded structures. ProsaII places our Rad1Mm model structure between the models of PCNAAc and β, for which the correctness of the PCNA fold is certain. Sensitivity of ProsaII evaluations is illustrated by a comparison with another model of β, one generated using the same template but with an incorrect alignment (Kong et al. 1992). ProsaII identified the model based on the incorrect alignment (β*) as an incorrect structure. Respective ProsaII Z scores (Sippl 1993) are −10.42 for PCNASc, −9.45 for PCNAAc, −7.36 for Rad1Mm, −6.81 for β, and −0.36 for β*. Cell 1999 96, 769-770DOI: (10.1016/S0092-8674(00)80587-5)