TRUTH TABLES Section 1.3.

Slides:



Advertisements
Similar presentations
Geometry Logic.
Advertisements

TRUTH TABLES The general truth tables for each of the connectives tell you the value of any possible statement for each of the connectives. Negation.
Logic & Critical Reasoning
Chapter 3 section 2. Please form your groups The 1 st column represents all possibilities for the statement that can be either True or False. The 2 nd.
Truth Tables Presented by: Tutorial Services The Math Center.
Copyright 2013, 2010, 2007, Pearson, Education, Inc. Section 3.2 Truth Tables for Negation, Conjunction, and Disjunction.
Logic Chapter 2. Proposition "Proposition" can be defined as a declarative statement having a specific truth-value, true or false. Examples: 2 is a odd.
Today’s Topics n Review Logical Implication & Truth Table Tests for Validity n Truth Value Analysis n Short Form Validity Tests n Consistency and validity.
1 Section 1.2 Propositional Equivalences. 2 Equivalent Propositions Have the same truth table Can be used interchangeably For example, exclusive or and.
1 Math 306 Foundations of Mathematics I Math 306 Foundations of Mathematics I Goals of this class Introduction to important mathematical concepts Development.
Through the Looking Glass, 1865
Propositional Logic 7/16/ Propositional Logic A proposition is a statement that is either true or false. We give propositions names such as p, q,
Chapter 3 Introduction to Logic © 2008 Pearson Addison-Wesley. All rights reserved.
Truth Tables for Negation, Conjunction, and Disjunction.
3.2 – Truth Tables and Equivalent Statements
TRUTH TABLES. Introduction Statements have truth values They are either true or false but not both Statements may be simple or compound Compound statements.
Logic ChAPTER 3.
Copyright 2013, 2010, 2007, Pearson, Education, Inc. Section 3.2 Truth Tables for Negation, Conjunction, and Disjunction.
Chapter 3 Section 4 – Slide 1 Copyright © 2009 Pearson Education, Inc. AND.
Section 1-4 Logic Katelyn Donovan MAT 202 Dr. Marinas January 19, 2006.
Course Outline Book: Discrete Mathematics by K. P. Bogart Topics:
Chapter 8 Logic DP Studies. Content A Propositions B Compound propositions C Truth tables and logical equivalence D Implication and equivalence E Converse,
Chapter 1 The Logic of Compound Statements. Section 1.1 Logical Form and Logical Equivalence.
BY: MISS FARAH ADIBAH ADNAN IMK. CHAPTER OUTLINE: PART III 1.3 ELEMENTARY LOGIC INTRODUCTION PROPOSITION COMPOUND STATEMENTS LOGICAL.
MATH 102 Contemporary Math S. Rook
Math 240: Transition to Advanced Math Deductive reasoning: logic is used to draw conclusions based on statements accepted as true. Thus conclusions are.
Fall 2002CMSC Discrete Structures1 Let’s get started with... Logic !
Logical Form and Logical Equivalence Lecture 2 Section 1.1 Fri, Jan 19, 2007.
3.3: Truth Tables. Types of Statements Negation: ~p Conjunction: p ˄ q (p and q) Disjunction: p V q (p or q, or both) Conditional: p → q (if p, then q)
LOGIC Lesson 2.1. What is an on-the-spot Quiz  This quiz is defined by me.  While I’m having my lectures, you have to be alert.  Because there are.
Chapter 7 Logic, Sets, and Counting
Chapter 3: Semantics PHIL 121: Methods of Reasoning March 13, 2013 Instructor:Karin Howe Binghamton University.
Chapter 3: Introduction to Logic. Logic Main goal: use logic to analyze arguments (claims) to see if they are valid or invalid. This is useful for math.
MLS 570 Critical Thinking Reading Notes for Fogelin: Propositional Logic Fall Term 2006 North Central College.
Chapter 8 – Symbolic Logic Professor D’Ascoli. Symbolic Logic Because the appraisal of arguments is made difficult by the peculiarities of natural language,
Propositional Logic. Propositions Any statement that is either True (T) or False (F) is a proposition Propositional variables: a variable that can assume.
How do I show that two compound propositions are logically equivalent?
Truth Tables Geometry Unit 11, Lesson 6 Mrs. King.
Chapter 7 Logic, Sets, and Counting Section 1 Logic.
6.1 Logic Logic is not only the foundation of mathematics, but also is important in numerous fields including law, medicine, and science. Although the.
LOGIC.
Logical Form and Logical Equivalence Lecture 1 Section 1.1 Wed, Jan 12, 2005.
Logical Form and Logical Equivalence M Logical Form Example 1 If the syntax is faulty or execution results in division by zero, then the program.
Simplifying Boolean Expressions. Boolean Operators (T/F) xyx AND y FFF FTF TFF TTT xyx OR y FFF FTT TFT TTT xyx XOR y FFF FTT TFT TTF xNOT x FT TF.
TRUTH TABLES. Introduction The truth value of a statement is the classification as true or false which denoted by T or F. A truth table is a listing of.
Notes - Truth Tables fun, fun, and more fun!!!!. A compound statement is created by combining two or more statements, p and q.
Joan Ridgway. If a proposition is not indeterminate then it is either true (T) or false (F). True and False are complementary events. For two propositions,
UNIT 01 – LESSON 10 - LOGIC ESSENTIAL QUESTION HOW DO YOU USE LOGICAL REASONING TO PROVE STATEMENTS ARE TRUE? SCHOLARS WILL DETERMINE TRUTH VALUES OF NEGATIONS,
Chapter 7 Evaluating Deductive Arguments II: Truth Functional Logic Invitation to Critical Thinking First Canadian Edition.
Invitation to Critical Thinking Chapter 7 Lecture Notes Chapter 7.
Outline Logic Propositional Logic Well formed formula Truth table
رياضيات متقطعة لعلوم الحاسب MATH 226. Text books: (Discrete Mathematics and its applications) Kenneth H. Rosen, seventh Edition, 2012, McGraw- Hill.
Section 1.1. Propositions A proposition is a declarative sentence that is either true or false. Examples of propositions: a) The Moon is made of green.
Mathematics for Computing Lecture 2: Computer Logic and Truth Tables Dr Andrew Purkiss-Trew Cancer Research UK
TRUTH TABLES Edited from the original by: Mimi Opkins CECS 100 Fall 2011 Thanks for the ppt.
 2012 Pearson Education, Inc. Slide Chapter 3 Introduction to Logic.
Reasoning and Proof Chapter Use Inductive Reasoning Conjecture- an unproven statement based on an observation Inductive reasoning- finding a pattern.
 Statement - sentence that can be proven true or false  Truth value – true or false  Statements are often represented using letters such as p and q.
Chapter 1. Chapter Summary  Propositional Logic  The Language of Propositions (1.1)  Logical Equivalences (1.3)  Predicate Logic  The Language of.
Chapter 1 Logic and proofs
Section 3.2: Truth Tables for Negation, Conjunction, and Disjunction
Logical Operators (Connectives) We will examine the following logical operators: Negation (NOT,  ) Negation (NOT,  ) Conjunction (AND,  ) Conjunction.
Logical functors and connectives. Negation: ¬ The function of the negation is to reverse the truth value of a given propositions (sentence). If A is true,
Introduction to Logic © 2008 Pearson Addison-Wesley.
DISCRETE MATHEMATICS CHAPTER I.
Thinking Mathematically
Truth Tables and Equivalent Statements
TRUTH TABLES.
TRUTH TABLES continued.
Chapter 3 Introduction to Logic 2012 Pearson Education, Inc.
Presentation transcript:

TRUTH TABLES Section 1.3

Introduction The truth value of a statement is the classification as true or false which denoted by T or F. A truth table is a listing of all possible combinations of the individual statements as true or false, along with the resulting truth value of the compound statements. Truth tables are an aide in distinguishing valid and invalid arguments.

T F p ~p Truth Table for ~p Recall that the negation of a statement is the denial of the statement. If the statement p is true, the negation of p, i.e. ~p is false. If the statement p is false, then ~p is true. Note that since the statement p could be true or false, we have 2 rows in the truth table. p ~p T F

T F Truth Table for p ^ q p q p ^ q Recall that the conjunction is the joining of two statements with the word and. The number of rows in this truth table will be 4. (Since p has 2 values, and q has 2 value.) For p ^ q to be true, then both statements p, q, must be true. If either statement or if both statements are false, then the conjunction is false. p q p ^ q T F

T F Truth Table for p v q p q p v q Recall that a disjunction is the joining of two statements with the word or. The number of rows in this table will be 4, since we have two statements and they can take on the two values of true and false. For a disjunction to be true, at least one of the statements must be true. A disjunction is only false, if both statements are false. p q p v q T F

T F Truth Table for p  q p q p  q Recall that conditional is a compound statement of the form “if p then q”. Think of a conditional as a promise. If I don’t keep my promise, in other words q is false, then the conditional is false if the premise is true. If I keep my promise, that is q is true, and the premise is true, then the conditional is true. When the premise is false (i.e. p is false), then there was no promise. Hence by default the conditional is true. p q p  q T F

Number of Rows If a compound statement consists of n individual statements, each represented by a different letter, the number of rows required in the truth table is 2n.

Equivalent Expressions Equivalent expressions are symbolic expressions that have identical truth values for each corresponding entry in a truth table. Hence ~(~p) ≡ p. The symbol ≡ means equivalent to. p ~p ~(~p) T F

Negation of the Conditional Here we look at the negation of the conditional. Note that the 4th and 6th columns are identical. Hence p ^ ~q is equivalent to ~(p  q). p q ~q p ^ ~q p  q ~(p  q) T F

De Morgan’s Laws The negation of the conjunction p ^ q is given by ~(p ^ q) ≡ ~p v ~q. “Not p and q” is equivalent to “not p or not q.” The negation of the disjunction p v q is given by ~(p v q) ≡ ~p ^ ~q. “Not p or q” is equivalent to “not p and not q.” We will look at De Morgan’s Laws again with Venn Diagrams in Chapter 2.