Dynamic embedding strategy of VQ-based information hiding approach

Slides:



Advertisements
Similar presentations
1 Adjustable prediction-based reversible data hiding Authors: Chin-Feng Lee and Hsing-Ling Chen Source: Digital Signal Processing, Vol. 22, No. 6, pp.
Advertisements

Fast vector quantization image coding by mean value predictive algorithm Authors: Yung-Gi Wu, Kuo-Lun Fan Source: Journal of Electronic Imaging 13(2),
1 Reversible data hiding for high quality images using modification of prediction errors Source: The Journal of Systems and Software, In Press, Corrected.
1 An Efficient VQ-based Data Hiding Scheme Using Voronoi Clustering Authors:Ming-Ni Wu, Puu-An Juang, and Yu-Chiang Li.
1 Information Hiding Based on Search Order Coding for VQ Indices Source: Pattern Recognition Letters, Vol.25, 2004, pp.1253 – 1261 Authors: Chin-Chen Chang,
1 資訊隱藏技術之研究 The Study of Information Hiding Mechanisms 指導教授: Chang, Chin-Chen ( 張真誠 ) 研究生: Lu, Tzu-Chuen ( 呂慈純 ) Department of Computer Science and Information.
Palette Partition Based Data Hiding for Color Images Yu-Chiang Li, Piyu Tsai, Chih-Hung Lin, Hsiu-Lien Yeh, and Chien-Ting Huang Speaker : Yu-Chiang Li.
Reporter :Chien-Wen Huang Date : Information Sciences, Vol. 176, No. 22, Nov. 2006, pp Received 29 December 2004; received in revised.
1 Adaptive Data Hiding in Edge Areas of Images with Spatial LSB Domain Systems Source: IEEE Transactions on Information Forensics and Security, Vol. 3,
基於 (7,4) 漢明碼的隱寫技術 Chair Professor Chin-Chen Chang ( 張真誠 ) National Tsing Hua University National Chung Cheng University Feng Chia University
Advisor: Chang, Chin-Chen Student: Chen, Chang-Chu
基於(7,4)漢明碼的隱寫技術 Chair Professor Chin-Chen Chang (張真誠)
(k, n)-Image Reversible Data Hiding
Palette Partition Based Data Hiding for Color Images
Source: The Journal of Systems and Software, Volume 67, Issue 2, pp ,
Data Mining and Its Applications to Image Processing
Chapter 3 向量量化編碼法.
A New Image Compression Scheme Based on Locally Adaptive Coding
Advisor: Chin-Chen Chang1, 2 Student: Yi-Hui Chen2
Reversible Data Hiding in JPEG Images using Ordered Embedding
Chair Professor Chin-Chen Chang Feng Chia University Aug. 2008
A Color Image Hiding Scheme Based on SMVQ and Modulo Operator
Chair Professor Chin-Chen Chang Feng Chia University
Source :Journal of visual Communication and Image Representation
Reversible data hiding scheme based on significant-bit-difference expansion Sourse: IET Image Processing ( Volume: 11, Issue: 11, ), Pages 1002.
Chair Professor Chin-Chen Chang Feng Chia University
High-capacity image hiding scheme based on vector quantization
Advisor: Chin-Chen Chang1, 2 Student: Wen-Chuan Wu2
A Data Hiding Scheme Based Upon Block Truncation Coding
第七章 資訊隱藏 張真誠 國立中正大學資訊工程研究所.
Source:Multimedia Tools and Applications, Vol. 77, No. 20, pp , Oct
Hiding Data in a Color Palette Image with Hybrid Strategies
Advisor: Chin-Chen Chang1, 2 Student: Yi-Pei Hsieh2
A Restricted Region-based Data-hiding Scheme
Source : Signal Processing, vol. 126, pp ,  November 2016
Advisor: Prof. Chin-Chen Chang (張真誠 教授) Student: Wei-Liang Tai (戴維良)
Reversible Data Hiding Scheme Using Two Steganographic Images
Advisor:Prof. Chin-Chen Chang Student :Kuo-Nan Chen
An efficient reversible image authentication method using improved PVO and LSB substitution techniques Source : Signal Processing: Image Communication,
Chair Professor Chin-Chen Chang (張真誠) National Tsing Hua University
An AMBTC compression based data hiding scheme using pixel value adjusting strategy Sourse: Multidimensional Systems and Signal Processing, Volume 29,
An AMBTC compression based data hiding scheme using pixel value adjusting strategy Sourse: Multidimensional Systems and Signal Processing, Volume 29,
A reversible and secure patient information hiding system for IoT driven e-health Source : International Journal of Information Management, Available online.
Source : Journal of Visual Communication and Image Representation, vol
Reversible data hiding in encrypted images based on absolute mean difference of multiple neighboring pixels Source: Journal of Visual Communication and.
Chair Professor Chin-Chen Chang Feng Chia University
A Self-Reference Watermarking Scheme Based on Wet Paper Coding
A Color Image Hiding Scheme Based on SMVQ and Modulo Operator
Hiding Information in VQ Index Tables with Reversibility
Information Hiding and Its Applications
Chair Professor Chin-Chen Chang (張真誠) National Tsing Hua University
Source : Journal of Visual Communication and Image Representation, vol
Zhe-Ming Lu, Chun-He Liu, Dian-Guo Xu, Sheng-He Sun,
Authors: Chin-Chen Chang, Yi-Hui Chen, and Chia-Chen Lin
Source:Multimedia Tools and Applications, Vol. 77, No. 20, pp , Oct
EarthTour Presentations
Multi-Tier and Multi-Bit Reversible Data Hiding with Contents Characteristics Source : Journal of Information Hiding and Multimedia Signal Processing, Volume.
A Self-Reference Watermarking Scheme Based on Wet Paper Coding
De-clustering and Its Application to Steganography
A Data Hiding Scheme Based Upon Block Truncation Coding
Source: Pattern Recognition, Volume 40, Issue 2, February 2007, pp
Predictive Grayscale Image Coding Scheme Using VQ and BTC
Author :Ji-Hwei Horng (洪集輝) Professor National Quemoy University
Authors: Chin-Chen Chang, Yi-Hui Chen, and Chia-Chen Lin
Dynamic improved pixel value ordering reversible data hiding
A New Image Compression Scheme Based on Locally Adaptive Coding
Source: Multidim Syst Sign Process, vol. 29, no. 4, pp , 2018
A Restricted Region-based Data-hiding Scheme
Rich QR Codes With Three-Layer Information Using Hamming Code
Hiding Information in VQ Index Tables with Reversibility
Presentation transcript:

Dynamic embedding strategy of VQ-based information hiding approach Source : Journal of Visual Communication and Image Representation, vol. 59, pp. 14-32, February 2019 Authors : Cheng-Ta Huang, Li-Chiun Lin, Cheng-Hsing Yang and Shiuh-Jeng Wang Speaker : Chia-Shuo Shih Date : 2019/02/28 1

Outline Introduction Related work Proposed method Experimental results Conclusions 2

Introduction(1/2)-data hiding Secret bits Original image Stego image 3

Introduction(2/2)-Compression 512 * 512 = 262144(pixels) 262144 * 8 = 2097152(bits) Compression ratio(CR) = 0.5 2097152(bits) 1048756(bits) Original image Compressed image lossy compression lossless compression Data hiding Improve the image quality 4

Related work(1/3)-Vector Quantization VQ is a lossy image coding technique. VQ consists of three procedures: Codebook design Generate a set of representative codewords. The LBG algorithm is the most commonly used method. Image Encoding Image Decoding [34] Y. Linde, A. Buzo, R. Gray, “Algorithm for Vector Quantizer Design”, IEEE Transactions on Communications, vol. 28, no. 1, pp: 84-95, 1980. 5

Related work(2/3)-Vector Quantization Image Encoding Partition the image into non-overlapped image block Find the closest codeword in the codebook for each image block x The index of the closest codeword of x is recorded. Image Decoding Reconstruct each block by the codeword in the codebook of its index. 6

Related work(3/3)-Vector Quantization Codebook 7

Proposed method(1/9) 𝐶 𝑖 𝑊 𝑖 𝑊 𝑖 ′′′ 8 support take out LSB VQ Secret bits Index block 8

Proposed method(2/9) 4 4 … 65 77 78 90 84 66 70 72 79 80 83 75 69 67 Original image 9

Proposed method(3/9) 𝐹 𝑖 10 Codebook size = 512 I = 65 0 0100 0001 2 77 78 90 84 66 70 72 79 80 83 75 69 67 60 70 64 80 78 75 79 74 69 77 76 VQ 𝑊 𝑖 = {15,17,16,20,19,20,18,18,19,37,34,39,35,38,40,38} Image block Index 𝐶 𝑖 = {16,19,19,22,21,16,17,18,19,40,41,37,33,34,33,36} Codebook Index 𝐹 𝑖 65 = 0100 0001 77 = 0100 1101 . 79 = 0100 1111 67 = 0100 0011 72 = 0100 1000 32 = 0100 000 38 = 0100 110 . 39 = 0100 111 67 = 0100 0011 72 = 0100 1000 16 = 0100 00 19 = 0100 11 . 33 = 0100 001 36 = 0100 100 {65,77,78,90,84,66,70,72,79,80,83,75,66,69,67,72} {32,38,39,45,42,33,35,36,39,80,83,75,66,69,67,72} 10

Proposed method(4/9) T = 3 S = [1001111000100010101101111000100011111100] 𝐶 𝑖 = {16,19,19,22,21,16,17,18,19,40,41,37,33,34,33,36} 𝐹 𝑖 = { 0 } 𝑊 𝑖 = {15,17,16,20,19,20,18,18,19,37,34,39,35,38,40,38} 𝑊 𝑖 ′ = { 19 } 𝑊 𝑖 ′ = 𝑊 𝑖 +𝑏, 𝑖𝑓 𝐶 𝑖 > 𝑊 𝑖 𝑊 𝑖 −𝑏, 𝑖𝑓 𝐶 𝑖 < 𝑊 𝑖 𝑊 𝑖 ,𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 𝐶 1 = 16 𝑊 1 = 15 𝐹 1 = 0 S = [10] S = [100] S = [1001] S = [1] 𝑊 1 ′ = 19 𝑊 1 + S ≦ 𝐶 1 + T 15 + 1 ≦ 16 + 3 𝑊 1 + S ≦ 𝐶 1 + T 15 + 2 ≦ 16 + 3 𝑊 1 + S ≦ 𝐶 1 + T 15 + 4 ≦ 16 + 3 𝑊 1 + S ≦ 𝐶 1 + T 15 + 9 ≦ 16 + 3 11

Proposed method(5/9) T = 3 S = [100 11 110 00100010101101111000100011111100] 𝐶 𝑖 = {16,19,19,22,21,16,17,18,19,40,41,37,33,34,33,36} 𝐹 𝑖 = { 0,0,0,1 } 𝑊 𝑖 = {15,17,16,20,19,20,18,18,19,37,34,39,35,38,40,38} 𝑊 𝑖 ′ = { 19,20,22,23 } 𝑊 𝑖 ′ = 𝑊 𝑖 +𝑏, 𝑖𝑓 𝐶 𝑖 > 𝑊 𝑖 𝑊 𝑖 −𝑏, 𝑖𝑓 𝐶 𝑖 < 𝑊 𝑖 𝑊 𝑖 ,𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 𝐶 4 = 22 𝑊 4 = 20 𝐹 4 = 1 S = [0] 𝑆 ′ = [1] S = [00] 𝑆 ′ = [11] S = [001] 𝑆 ′ = [110] 𝑊 4 + 𝑆 ′ ≦ 𝐶 4 + T 20 + 1 ≦ 22 + 3 𝑊 4 + 𝑆 ′ ≦ 𝐶 4 + T 20 + 3 ≦ 22 + 3 𝑊 4 + 𝑆 ′ ≦ 𝐶 4 + T 20 + 6 ≦ 22 + 3 𝑊 4 ′ = 23 12

Proposed method(6/9) T = 3 S = [100 11 110 00 100 010 10 1101111000100011111100] 𝐶 𝑖 = {16,19,19,22,21,16,17,18,19,40,41,37,33,34,33,36} 𝐹 𝑖 = { 0,0,0,1,0,1,0,1 } 𝑊 𝑖 = {15,17,16,20,19,20,18,18,19,37,34,39,35,38,40,38} 𝑊 𝑖 ′ = { 19,20,22,23,23,15,16,18 } 𝑊 𝑖 ′ = 𝑊 𝑖 +𝑏, 𝑖𝑓 𝐶 𝑖 > 𝑊 𝑖 𝑊 𝑖 −𝑏, 𝑖𝑓 𝐶 𝑖 < 𝑊 𝑖 𝑊 𝑖 ,𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 𝐶 8 = 18 𝑊 8 = 18 𝑊 8 = 𝑊 8 ′ = 18 S = [1] 𝐹 8 = 1 13

Proposed method(7/9)-The extracting process 𝑊 𝑖 ′ = {19,20,22,23,23,15,16,18,19,41,40,36,31,34,33,34 } 𝐹 𝑖 = { 0,0,0,1,0,1,0,1,1,1,0,1,0,1,0,0 } I = 0 0100 0001 2 𝑊 𝑖 ′ 6 𝑜𝑟 7𝑏𝑖𝑡𝑠 + 𝐹 𝑖 1𝑏𝑖𝑡 = 𝑊 𝑖 ′′ (7 𝑜𝑟 8𝑏𝑖𝑡𝑠) 𝑊 1 ′ =19(010011) + 𝐹 1 = 0 = 𝑊 1 ′′ =0100110(38) 𝑊 10 ′ =41(0101001) + 𝐹 10 = 1 = 𝑊 10 ′′ =01010011(83) 𝑊 𝑖 ′′ = {38,40,44,47,46,31,32,37,39,83,80,73,62,69,66,68} 𝑊 𝑖 ′′ 7𝑏𝑖𝑡𝑠 + 𝐼 1𝑏𝑖𝑡 = 𝑊 𝑖 ′′′ (8𝑏𝑖𝑡𝑠) 𝑊 1 ′′ =38(0100110) + 𝐼 = 0 = 𝑊 1 ′′′ =01001100 76 𝑊 𝑖 ′′′ = {76,80,89,94,92,62,64,74,79,83,80,73,62,69,66,68} 14

Proposed method(8/9)-The extracting process 𝑊 𝑖 ′′′ = {76,80,89,94,92,62,64,74,79,83,80,73,62,69,66,68} 𝑊 1 ′′′ = 76(01001100) (0100110) I = (0) 𝑊 2 ′′′ = 80(01010000) (0101000) I = (00) . 𝑊 9 ′′′ = 79(01001111) (0100111) I = (0 0100 0001) 𝑊 𝑖 ′′ = {38,40,44,47,46,31,32,37,39,83,80,73,62,69,66,68} 𝑊 𝑖 ′ = {19,20,22,23,23,15,16,18,19,41,40,36,31,34,33,34 } 𝐹 𝑖 = { 0,0,0,1,0,1,0,1,1,1,0,1,0,1,0,0 } 60 70 64 80 78 75 79 74 69 77 76 Codebook Index 𝑊 𝑖 = {15,17,16,20,19,20,18,18,19,37,34,39,35,38,40,38} 15

Proposed method(9/9)-The extracting process 𝑊 𝑖 = {15,17,16,20,19,20,18,18,19,37,34,39,35,38,40,38} 𝑊 𝑖 ′ = {19,20,22,23,23,15,16,18,19,41,40,36,31,34,33,34 } 𝐹 𝑖 = { 0,0,0,1,0,1,0,1,1,1,0,1,0,1,0,0 } 𝐷 ′ = | 𝑊 𝑖 ′ − 𝑊 𝑖 | 𝑊 1 ′ − 𝑊 1 =19 −15=4 100 𝐹 1 =0 , 𝑆=100 𝑊 4 ′ − 𝑊 4 =23 −20=3 11 𝐹 4 =1 , 𝑆=00 𝑊 8 ′ − 𝑊 8 =18 −18=0 𝐹 8 =1 , 𝑆=1 S = [100 11 110 00 100 010 10 1 1 011 110 00 100 011 111 100] 16

Experimental results(1/6) 17

Experimental results(2/6) PSNR (dB) EC (bits) t 128 256 512 1024 39.76 40.51 40.85 41.11 508,571 455,625 433,687 414,215 1 39.75 40.54 40.86 508,587 455,692 433,654 414,200 2 39.77 40.53 41.09 508,523 455,563 433,681 414,207 3 39.68 40.41 40.72 41.00 516,349 464,347 441,685 421,240 4 39.39 40.06 40.40 40.68 530,220 478,194 454,103 431,922 5 38.88 39.48 39.85 40.17 545,077 492,272 466,581 442,910 6 38.24 38.80 39.19 39.56 559,125 505,526 478,164 452,784 7 37.56 38.12 38.54 38.95 571,356 516,170 487,565 460,821 8 36.76 37.32 37.75 38.20 587,778 531,407 501,852 474,221 9 35.95 36.51 36.96 37.44 599,878 542,109 510,983 482,190 10 35.08 35.62 36.09 36.56 616,456 557,886 526,264 496,980 11 34.32 34.85 35.35 35.85 627,452 567,713 534,810 504,223 12 33.51 34.01 34.49 34.99 645,617 585,524 552,235 521,444 13 32.84 33.34 33.84 34.36 655,183 593,935 559,624 527,792 14 32.15 32.63 33.11 33.62 670,523 609,070 574,836 542,747 15 31.61 32.64 33.17 678,227 615,327 580,263 547,541  Average PSNR and EC with each threshold t. 18

Experimental results(3/6) 19

Experimental results(4/6) 256 PSNR (dB) EC (bits) t = 0 Huang’s Ours Delta Airplane 33.73 42.25 8.52 429,569 375,734 −53835 Baboon 27.55 37.16 9.61 704,569 567,010 −137559 Boat 33.21 41.47 8.26 490,188 411,482 −78706 Goldhill 34.25 42.03 7.78 552,546 441,132 −111414 Lena 34.86 42.78 7.92 454,996 380,976 −74020 Average 32.72 41.14 8.42 526,374 435,267 −91107 t = 12 34.45 0.72 511,084 81,515 33.44 5.89 676,059 −28510 34.20 0.99 548,866 58,678 34.16 −0.09 579,319 26,773 34.29 −0.57 524,093 69,097 34.11 1.39 567,884 41,511 t = 15 32.50 −1.23 539,583 110,014 31.83 4.28 704,221 −348 32.26 −0.95 579,269 89,081 32.14 −2.11 611,392 58,846 32.32 −2.54 554,907 99,911 32.21 −0.51 597,874 71,501 Comparison with Huang’s two-level encoding. 20 C.-T. Huang, M.-Y. Tsai, L.-C. Lin, W.-J. Wang, S.-J. Wang”VQ-based data hiding in IoT networks using two-level encoding with adaptive pixel replacements”J. Supercomput. (2016), pp. 1-20

Experimental results(5/6) 21 W.-J. Wang, C.-T. Huang, S.-R. Tsuei, S.-J. Wang”A greedy steganographic SMVQ approach of greedy-USBIRDS using secret bits for image-block repairing based on differences” Multimed. Tools Appl., 75 (22) (2016), pp. 14895-14916

Experimental results(6/6) 22 W.-J. Wang, C.-T. Huang, S.-R. Tsuei, S.-J. Wang”A greedy steganographic SMVQ approach of greedy-USBIRDS using secret bits for image-block repairing based on differences” Multimed. Tools Appl., 75 (22) (2016), pp. 14895-14916

Conclusions Improve embedding capacity and image quality. dynamic-length secret bits. 23

-END- 24