Volume 10, Issue 6, Pages (February 2015)

Slides:



Advertisements
Similar presentations
CATALASE2 Coordinates SA-Mediated Repression of Both Auxin Accumulation and JA Biosynthesis in Plant Defenses  Hong-Mei Yuan, Wen-Cheng Liu, Ying-Tang.
Advertisements

Volume 17, Issue 5, Pages (October 2016)
The Ras-Erk-ETS-Signaling Pathway Is a Drug Target for Longevity
Volume 27, Issue 15, Pages e4 (August 2017)
Volume 25, Issue 14, Pages (July 2015)
Alessio Vagnoni, Simon L. Bullock  Current Biology 
Volume 12, Issue 2, Pages (August 2012)
Volume 1, Issue 2, Pages (February 2005)
Defining Resistance and Tolerance to Cancer
Volume 27, Issue 23, Pages e5 (December 2017)
Volume 12, Issue 2, Pages (August 2012)
Volume 7, Issue 1, Pages (January 2014)
Kevin R. Duffy, Donald E. Mitchell  Current Biology 
Volume 21, Issue 11, Pages (December 2017)
Alterations in the Gut Microbiota Associated with HIV-1 Infection
CoREST Represses the Heat Shock Response Mediated by HSF1
Encoding of Conditioned Taste Aversion in Cortico-Amygdala Circuits
Choreographing the Fly's Danse Macabre
Volume 11, Issue 12, Pages (June 2015)
Matthew H. Sieber, Carl S. Thummel  Cell Metabolism 
Volume 11, Issue 1, Pages (January 2010)
Volume 18, Issue 4, Pages (October 2015)
Volume 20, Issue 2, Pages (July 2017)
Volume 17, Issue 5, Pages (October 2016)
Volume 20, Issue 4, Pages (October 2016)
Volume 22, Issue 6, Pages (February 2018)
A Role for Stargazin in Experience-Dependent Plasticity
Kevin R. Duffy, Donald E. Mitchell  Current Biology 
Volume 13, Issue 6, Pages (June 2011)
Volume 29, Issue 2, Pages e10 (February 2019)
Volume 21, Issue 6, Pages (November 2017)
Sophie Layalle, Nathalie Arquier, Pierre Léopold  Developmental Cell 
Volume 25, Issue 8, Pages e5 (November 2018)
Volume 9, Issue 3, Pages (September 2017)
Volume 18, Issue 2, Pages (January 2017)
Lithium Promotes Longevity through GSK3/NRF2-Dependent Hormesis
MTOR Inhibition Restores Amino Acid Balance in Cells Dependent on Catabolism of Extracellular Protein  Michel Nofal, Kevin Zhang, Seunghun Han, Joshua.
Dopaminergic Modulation of Arousal in Drosophila
A Sox Transcription Factor Is a Critical Regulator of Adult Stem Cell Proliferation in the Drosophila Intestine  Fanju W. Meng, Benoît Biteau  Cell Reports 
Volume 23, Issue 7, Pages (May 2018)
Volume 135, Issue 6, Pages (December 2008)
Volume 18, Issue 2, Pages (January 2017)
Social Context Influences Chemical Communication in D
Katelyn T. Byrne, Robert H. Vonderheide  Cell Reports 
Volume 26, Issue 17, Pages (September 2016)
Volume 47, Issue 5, Pages (September 2012)
Samuel James Walker, Verónica María Corrales-Carvajal, Carlos Ribeiro 
Kanyan Xu, Xiangzhong Zheng, Amita Sehgal  Cell Metabolism 
Volume 11, Issue 9, Pages (June 2015)
Chunli Ren, Paul Webster, Steven E. Finkel, John Tower  Cell Metabolism 
Volume 42, Issue 1, Pages (January 2015)
Volume 27, Issue 6, Pages e7 (May 2019)
A Conserved Circadian Function for the Neurofibromatosis 1 Gene
Volume 20, Issue 4, Pages (October 2016)
Volume 17, Issue 1, Pages (September 2016)
Volume 25, Issue 12, Pages e3 (December 2018)
Katelyn T. Byrne, Robert H. Vonderheide  Cell Reports 
Kirst King-Jones, Michael A. Horner, Geanette Lam, Carl S. Thummel 
Volume 22, Issue 4, Pages e5 (October 2017)
Pierre-Yves Musso, Paul Tchenio, Thomas Preat  Cell Reports 
Volume 7, Issue 3, Pages e7 (September 2018)
Matthew H. Sieber, Carl S. Thummel  Cell Metabolism 
Volume 17, Issue 5, Pages (October 2016)
Volume 26, Issue 2, Pages (January 2016)
Erin S. Keebaugh, Ryuichi Yamada, Benjamin Obadia, William B
Coordination of Triacylglycerol and Cholesterol Homeostasis by DHR96 and the Drosophila LipA Homolog magro  Matthew H. Sieber, Carl S. Thummel  Cell Metabolism 
XBP-1 Remodels Lipid Metabolism to Extend Longevity
MTOR Inhibition Restores Amino Acid Balance in Cells Dependent on Catabolism of Extracellular Protein  Michel Nofal, Kevin Zhang, Seunghun Han, Joshua.
Volume 1, Issue 4, Pages (April 2012)
A Role for S6 Kinase and Serotonin in Postmating Dietary Switch and Balance of Nutrients in D. melanogaster  Misha A. Vargas, Ningguang Luo, Atsushi Yamaguchi,
Presentation transcript:

Volume 10, Issue 6, Pages 865-872 (February 2015) Microbes Promote Amino Acid Harvest to Rescue Undernutrition in Drosophila  Ryuichi Yamada, Sonali A. Deshpande, Kimberley D. Bruce, Elizabeth M. Mak, William W. Ja  Cell Reports  Volume 10, Issue 6, Pages 865-872 (February 2015) DOI: 10.1016/j.celrep.2015.01.018 Copyright © 2015 The Authors Terms and Conditions

Cell Reports 2015 10, 865-872DOI: (10.1016/j.celrep.2015.01.018) Copyright © 2015 The Authors Terms and Conditions

Figure 1 I. orientalis Extends Fly Lifespan on Undernutrition Diet (A) Survival of axenic or I. orientalis-associated monoxenic flies on 0.1% yeast extract (YE) diet. I. orientalis association increases survival compared with the axenic control (p < 10−10, log rank test). (B) Survival on 0.5% YE diet. Survival curves of I. orientalis-associated and axenic flies do not differ (p > 0.090, log rank test). Monoxenic flies were inoculated once as adults with I. orientalis. N = 59–61 flies for each condition. See also Figure S1. Cell Reports 2015 10, 865-872DOI: (10.1016/j.celrep.2015.01.018) Copyright © 2015 The Authors Terms and Conditions

Figure 2 I. orientalis Increases Amino Acid Harvest in Drosophila (A) Radioisotope-labeled feeding assay for examining nutrient accumulation in the fly. Flies feed for 24 hr on radiolabeled food that is pre-inoculated with I. orientalis. Radioisotope abundance in the fly is then measured to reveal the effect of microbial association on nutrient accumulation. (B) Effect of I. orientalis association on fly accumulation of radiolabeled nutrients on 0.1% or 0.5% YE medium. Results (average ± SD) are normalized to the axenic control (dashed line) for each radioactive tracer. Significant differences between each tracer and its axenic control are shown (Mann-Whitney rank-sum test: ∗p < 0.05). N = 4 vials of 10 flies for each condition. Met = [35S]-methionine; Leu = [14C]-leucine; dCTP = [α-32P]-dCTP; Suc = [14C]-sucrose. (C) Distribution of accumulated [35S]-methionine in flies. After 24 hr feeding on [35S]-methionine-labeled 0.1% YE medium that is pre-inoculated with I. orientalis, the entire fly digestive tract is dissected and 35S is quantitated from the gut and remaining fly carcass. Results (average ± SD) are shown as a percentage of [35S]-methionine accumulation. Student’s t test: ∗∗∗p < 0.001. N = 4 groups of 2 flies each. See also Figure S2. Cell Reports 2015 10, 865-872DOI: (10.1016/j.celrep.2015.01.018) Copyright © 2015 The Authors Terms and Conditions

Figure 3 Principal Component Analysis of Metabolic Parameters from Axenic and I. orientalis-Associated Flies Maintained on 0.1% YE and 0.5% YE Diets (A) Plot of PC1 and PC2 scores, which account for 45% and 28% of the total variance, respectively. The metabolic state of I. orientalis-associated flies on 0.1% YE medium more closely resembles that of animals on higher YE diet (0.5% YE) than that of undernourished axenic flies. Loadings for PC1 and PC2, respectively: body mass, −0.452 and −0.146; protein, −0.419 and 0.233; glucose, 0.452 and 0.255; glycogen, 0.066 and 0.592; trehalose, 0.103 and 0.556; glycerol, −0.323 and 0.423; TAG, 0.274 and −0.145; ATP, −0.471 and 0.008. (B) PC1 scores (average ± SD) from (A). Significant differences are shown (one-way ANOVA followed by Tukey post-test for multiple comparisons: ∗∗∗p < 0.001). N = 6 for each condition. Abbreviations: Ax, axenic; I. ori, I. orientalis. See also Figure S3. Cell Reports 2015 10, 865-872DOI: (10.1016/j.celrep.2015.01.018) Copyright © 2015 The Authors Terms and Conditions

Figure 4 Heat-Killed I. orientalis Extends Lifespan on an Undernutrition Diet (A) Survival of axenic or I. orientalis-associated flies on 0.1% YE undernutrition diet. Live microbes were supplied once in early adulthood. The indicated quantity of heat-killed (HK) microbes was provided once in early adulthood (single dose) or at every food change (twice/week) throughout life (recurring). Microbial association (live or HK) extends survival in all experiments compared to the axenic control (p < 5 × 10−9 for all comparisons, log rank test) except in the single dose trial (p = 0.134, log rank test). N = 57–64 flies for each condition. (B) Body mass increases with microbe supplementation (average of three vials). Body mass of axenic flies was significantly lower than that of microbe-associated flies on days 20 and 27 (Kruskal-Wallis followed by Student-Newman-Keuls post-test for multiple comparisons: ∗p < 0.05). (C) Accumulation of [35S]-methionine (average ± SD) in the presence of live or HK I. orientalis on 0.1% YE medium. While live and HK microbes both extend fly lifespan, only live I. orientalis increases accumulation of the diet-supplemented radiolabel (Kruskal-Wallis followed by Tukey’s post-test for multiple comparisons: ∗p < 0.05). N = 4 vials of 10 flies for each condition. (D) Model of microbe-mediated amino acid harvest. I. orientalis increases amino acid/protein flux, resulting in improved nutrition and longevity in the fly host. The size of the arrows and radiation symbols represent the amount of amino acid flux and radiolabeled amino acid levels, respectively. See also Figure S4. Cell Reports 2015 10, 865-872DOI: (10.1016/j.celrep.2015.01.018) Copyright © 2015 The Authors Terms and Conditions