Role of tensor force in light nuclei with tensor optimized shell model

Slides:



Advertisements
Similar presentations
反対称化分子動力学でテンソル力を取り扱う試 み -更に前進するには?- A. Dote (KEK), Y. Kanada-En ’ yo ( KEK ), H. Horiuchi (Kyoto univ.), Y. Akaishi (KEK), K. Ikeda (RIKEN) 1.Introduction.
Advertisements

Spectroscopy at the Particle Threshold H. Lenske 1.
HL-3 May 2006Kernfysica: quarks, nucleonen en kernen1 Outline lecture (HL-3) Structure of nuclei NN potential exchange force Terra incognita in nuclear.
Delta-hole effects on the shell evolution of neutron-rich exotic nuclei Takaharu Otsuka University of Tokyo / RIKEN / MSU Chiral07 Osaka November 12 -
Lectures in Istanbul Hiroyuki Sagawa, Univeristy of Aizu June 30-July 4, Giant Resonances and Nuclear Equation of States 2. Pairing correlations.
8 He における ダイニュートロン形成と崩 れ 2013/7/27 RCNP 研究会「核子・ハイペロン多体系におけるクラスター現象」 1 Department of Physics, Kyoto University Fumiharu Kobayashi Yoshiko Kanada-En’yo arXiv:
Dineutron formation and breaking in 8 He th Sep. The 22nd European Conference on Few-Body Problems in Physics 1 Department of Physics, Kyoto University.
Study of Weakly Bound Nuclei with an Extended Cluster-Orbital Shell Model Hiroshi MASUI Kitami Institute of Technology, Kitami, Japan K. Kato Hokkaido.
Unified Description of Bound and Unbound States -- Resolution of Identity -- K. Kato Hokkaido University Oct. 6, 2010 KEK Lecture (2)
Coupled-Channel analyses of three-body and four-body breakup reactions Takuma Matsumoto (RIKEN Nishina Center) T. Egami 1, K. Ogata 1, Y. Iseri 2, M. Yahiro.
横田 朗A 、 肥山 詠美子B 、 岡 眞A 東工大理工A、理研仁科セB
Structure of Be hyper-isotopes Masahiro ISAKA (RIKEN) Collaborators: H. Homma and M. Kimura (Hokkaido University)
11 Role of tensor force in light nuclei based on the tensor optimized shell model Hiroshi TOKI RCNP, Osaka Univ. Manuel Valverde RCNP, Osaka Univ. Atsushi.
Role of tensor force in He and Li isotopes with tensor optimized shell model Hiroshi TOKI RCNP, Osaka Univ. Kiyomi IKEDA RIKEN Atsushi UMEYA RIKEN Takayuki.
1 軽い核におけるテンソル相関と 短距離相関の役割 核子と中間子の多体問題の統一的描像に向けて@ RCNP Tensor correlation for He and Li isotopes in Tensor-Optimized Shell Model (TOSM)
XII Nuclear Physics Workshop Maria and Pierre Curie: Nuclear Structure Physics and Low-Energy Reactions, Sept , Kazimierz Dolny, Poland Self-Consistent.
クラスター・シェル競合の新展開 板垣 直之 ( 京都大学基礎物理学研究所 ). Shell structure; single-particle motion of protons and neutrons decay threshold to clusters Excitation energy.
Takuma Matsumoto (Kyushu Univ.) K. Minomo, K. Ogata a, M. Yahiro, and K. Kato b (Kyushu Univ, a RCNP, b Hokkaido Univ) Description for Breakup Reactions.
Cluster-shell Competition in Light Nuclei N. Itagaki, University of Tokyo S. Aoyama, Kitami Institute of Technology K. Ikeda, RIKEN S. Okabe, Hokkaido.
Study of light kaonic nuclei with a Chiral SU(3)-based KN potential A. Dote (KEK) W. Weise (TU Munich)  Introduction  ppK - studied with a simple model.
Coupling of (deformed) core and weakly bound neutron M. Kimura (Hokkaido Univ.)
We construct a relativistic framework which takes into pionic correlations(2p-2h) account seriously from both interests: 1. The role of pions on nuclei.
Hiroshi MASUI Kitami Institute of Technology RCNP 研究会 「 核子・ハイペロン多体系におけるクラスター現象 」, KGU 関内, Sep. 2013, 横浜 Collaborators:K. KatoHokkaido Univ. K. IkedaRIKEN.
Hiroshi MASUI Kitami Institute of Technology Collaborators:K. KatoHokkaido Univ. K. IkedaRIKEN Aug. 2011, APFB2011, Sungkyunkwan Univ., Seoul, Korea.
Application of correlated basis to a description of continuum states 19 th International IUPAP Conference on Few- Body Problems in Physics University of.
Anomalous two-neutron transfer in neutron-rich Ni and Sn isotopes studied with continuum QRPA H.Shimoyama, M.Matsuo Niigata University 1 Dynamics and Correlations.
Cluster aspect of light unstable nuclei
Extended Brueckner-Hartree-Fock theory in many body system - Importance of pion in nuclei - Hiroshi Toki (RCNP, KEK) In collaboration.
Coulomb Breakup and Pairing Excitation of Two-Neutron Halo Nucleus 11 Li Niigata University S. Aoyama RCNPT. Myo Hokkaido UniveristyK. Kato RikenK. Ikeda.
Strong tensor correlation in light nuclei with tensor-optimized antisymmetrized molecular dynamics (TOAMD) International symposium on “High-resolution.
Faddeev Calculation for Neutron-Rich Nuclei Eizo Uzu (Tokyo Univ. of Science) Collaborators Masahiro Yamaguchi (RCNP) Hiroyuki Kamada (Kyusyu Inst. Tech.)
11 明 孝之 大阪工業大学 阪大 RCNP Tensor optimized shell model using bare interaction for light nuclei 共同研究者 土岐 博 阪大 RCNP 池田 清美 理研 RCNP
Tensor Optimized Few-body Model for s-shell nuclei Kaori Horii, Hiroshi Toki (RCNP, Osaka univ.) Takayuki Myo, (Osaka Institute of Technology) Kiyomi Ikeda.
Variational Multiparticle-Multihole Configuration Mixing Method with the D1S Gogny force INPC2007, Tokyo, 06/06/2007 Nathalie Pillet (CEA Bruyères-le-Châtel,
Cluster-Orbital Shell Model for neutron-lich nuclei Hiroshi MASUI Kitami Institute of Technology Collaborators: Kiyoshi KATO, Hokkaido Univ. Kiyomi IKEDA,
11 Tensor optimized shell model with bare interaction for light nuclei In collaboration with Hiroshi TOKI RCNP, Osaka Univ. Kiyomi IKEDA RIKEN 19th International.
Satoru Sugimoto Kyoto University 1. Introduction 2. Charge- and parity-projected Hartree-Fock method (a mean field type model) and its application to sub-closed.
Few-body approach for structure of light kaonic nuclei Shota Ohnishi (Hokkaido Univ.) In collaboration with Tsubasa Hoshino (Hokkaido Univ.) Wataru Horiuchi.
Few-Body Models of Light Nuclei The 8th APCTP-BLTP JINR Joint Workshop June 29 – July 4, 2014, Jeju, Korea S. N. Ershov.
Pairing Evidence for pairing, what is pairing, why pairing exists, consequences of pairing – pairing gap, quasi-particles, etc. For now, until we see what.
理論から見たテンソル力 Hiroshi Toki (RCNP, Osaka University) In collaboration with T. Myo (Osaka IT) Y. Ogawa (RCNP) K. Horii (RCNP) K. Ikeda.
Tensor interaction in Extended Brueckner-Hartree-Fock theory Hiroshi Toki (RCNP, Osaka) In collaboration with Yoko Ogawa.
多体共鳴状態の境界条件によって解析した3α共鳴状態の構造
Electric Dipole Response, Neutron Skin, and Symmetry Energy
Pairing Correlation in neutron-rich nuclei
Description of nuclear structures in light nuclei with Brueckner-AMD
Two-body force in three-body system: a case of (d,p) reactions
Masahiro Isaka (RIKEN)
Kaon Absorption from Kaonic Atoms and
Nuclear structure calculations with realistic nuclear forces
Resonance and continuum in atomic nuclei
Tensor optimized shell model and role of pion in finite nuclei
Nuclear Structure Tools for Continuum Spectroscopy
JLab6: Cluster structure connects to high-momentum components and internal quark modification of nuclei Short-Range Correlations (SRCs) dominated by np.
Yokohama National University Takenori Furumoto
Hiroshi MASUI Kitami Institute of Technology
Role of Pions in Nuclei and Experimental Characteristics
Relativistic mean field theory and chiral symmetry for finite nuclei
Relativistic extended chiral mean field model for finite nuclei
軽い不安定核における 共鳴状態の構造 明 孝之 大阪工業大学 1 KEK 理論セミナー  
Impurity effects in p-sd shell and neutron-rich L hypernuclei
Kernfysica: quarks, nucleonen en kernen
Pions in nuclei and tensor force
Few-body approach for structure of light kaonic nuclei
Di-nucleon correlations and soft dipole excitations in exotic nuclei
直交条件模型を用いた16Oにおけるαクラスターガス状態の研究
A self-consistent Skyrme RPA approach
Ab-initio nuclear structure calculations with MBPT and BHF
Department of Physics, Sichuan University
Osaka Institute of Technology
Presentation transcript:

Role of tensor force in light nuclei with tensor optimized shell model Takayuki MYO  明 孝之 Osaka Institute of Technology 大阪工業大学 International symposium on frontiers in nuclear physics -tensor interaction in nuclear and hadron physics- @ Beihang Univ., Beijing, 2011.11 1

Purpose & Outline Role of Vtensor in the nuclear structure by describing strong tensor correlation explicitly. Tensor Optimized Shell Model (TOSM) to describe tensor correlation. Unitary Correlation Operator Method (UCOM) to describe short-range correlation. TOSM+UCOM to He & Li isotopes with Vbare Halo formation in 11Li Coexistence of tensor and pairing correlations 2

Deuteron properties & tensor force Energy -2.24 MeV Kinetic 19.88 Central -4.46 Tensor -16.64 LS -1.02 P(L=2) 5.77% Radius 1.96 fm AV8’ S D Vcentral AV8’ Rm(s)=2.00 fm Rm(d)=1.22 fm r d-wave is “spatially compact” (high momentum) Vtensor

Tensor-optimized shell model (TOSM) TM, Sugimoto, Kato, Toki, Ikeda PTP117(2007)257 Configuration mixing within 2p2h excitations with high-L orbits.   TM et al., PTP113(2005) TM et al., PTP117(2007) Length parameters such as b0s, b0p , … are optimized independently, or superposed by many Gaussian bases. Spatial shrinkage of D-wave as seen in deuteron HF by Sugimoto et al,(NPA740) / Akaishi (NPA738) RMF by Ogawa et al.(PRC73), AMD by Dote et al.(PTP115) Satisfy few-body results with Minnesota central force (4,6He) 4He 4 4

Hamiltonian and variational equations in TOSM (0p0h+1p1h+2p2h) Particle state : Gaussian expansion for each orbit Gaussian basis function c.m. excitation is excluded by Lawson’s method TOSM code : p-shell region

Configurations in TOSM Gaussian expansion particle states C0 C1 C2 C3 nlj proton neutron hole states (harmonic oscillator basis) Application to Hypernuclei by Umeya (NIT) to investigate N-N coupling

Unitary Correlation Operator Method (short-range part) TOSM short-range correlator Bare Hamiltonian Shift operator depending on the relative distance Amount of shift, variationally determined. 2-body cluster expansion 7 7 H. Feldmeier, T. Neff, R. Roth, J. Schnack, NPA632(1998)61

4He in TOSM + S-wave UCOM T VLS E VC VT (exact) Kamada et al. PRC64 (Jacobi) TM, H. Toki, K. Ikeda PTP121(2009)511 VLS variational calculation E Gaussian expansion with 9 Gaussians VC VT good convergence 8

4-8He with TOSM+UCOM Difference from 4He in MeV No VNNN No continuum TM, A. Umeya, H. Toki, K. Ikeda PRC84 (2011) 034315 Difference from 4He in MeV ~6 MeV in 8He using GFMC No VNNN No continuum 4p4h in TOSM ~7 MeV in 8He using Cluster model (PLB691(2010)150 , TM et al.)

4-8He with TOSM+UCOM Excitation energies in MeV Bound state app. TM, A. Umeya, H. Toki, K. Ikeda PRC84 (2011) 034315 Excitation energies in MeV Bound state app. No continuum No VNNN Excitation energy spectra are reproduced well

5-9Li with TOSM+UCOM Preliminary results Excitation energies in MeV Bound state app. No continuum No VNNN Excitation energy spectra are reproduced well

4-8He with TOSM Minnesota force (Central+LS) Excitation energies in MeV

5-9Li with TOSM Minnesota force (Central+LS) Excitation energies in MeV

Matter radius of He isotopes in TOSM(AV8’) Cluster model TM, R. Ando, K. Kato PLB691(2010)150 AHe=a+4n Expt TOSM with AV8’ Halo Skin I. Tanihata et al., PLB289(‘92)261 G. D. Alkhazov et al., PRL78(‘97)2313 O. A. Kiselev et al., EPJA 25, Suppl. 1(‘05)215. P. Mueller et al., PRL99(2007)252501 14

Configurations of 4He in TOSM TM, H. Toki, K. Ikeda PTP121(2009)511 (0s1/2)4 83.0 % (0s1/2)−2JT(p1/2)2JT JT=10 2.6 JT=01 0.1 (0s1/2)−210(1s1/2)(d3/2)10 2.3 (0s1/2)−210(p3/2)(f5/2)10 1.9 Radius [fm] 1.54 deuteron correlation with (J,T)=(1,0) Cf. R.Schiavilla et al. (VMC) PRL98(2007)132501 R. Subedi et al. (JLab) Science320(2008)1476 12C(e,e’pN) S.C.Simpson, J.A.Tostevin PRC83(2011)014605 4He contains p1/2 of “pn-pair” 12C 10B+pn – Same feature in 5He-8He ground state 15

4-8He with TOSM+UCOM Excitation energies in MeV No VNNN No continuum Excitation energy spectra are reproduced well

Tensor correlation in 6He val.-n Ground state Excited state halo state (0+) Tensor correlation is suppressed due to Pauli-Blocking TM, K. Kato, K. Ikeda, J. Phys. G31 (2005) S1681 17 17

6He : Hamiltonian component in TOSM Difference from 4He in MeV bhole=1.5 fm 6He 0+1 0+2 n2 config (p3/2)2 (p1/2)2 DKin. 53.0 34.3 DCentral 27.8 14.1 DTensor 12.0 0.2 DLS 4.0 2.1 =18.4 MeV (hole) same trend in 5-8He LS splitting energy in 5He Terasawa, Arima PTP23 (’60) Nagata, Sasakawa, Sawada, Tamagaki, PTP22(’59) Myo, Kato, Ikeda, PTP113 (’05)

Characteristics of Li-isotopes Halo structure Breaking of magicity N=8 10-11Li, 11-12Be 11Li … (1s)2 ~ 50%. (Expt by Simon et al.,PRL83) Mechanism is unclear 11Li Tanihata et al., PRL55(1985)2676. PLB206(1998)592. 19

High-momentum Pairing-blocking :   K.Kato,T.Yamada,K.Ikeda,PTP101(‘99)119,  Masui,S.Aoyama,TM,K.Kato,K.Ikeda,NPA673('00)207. TM,S.Aoyama,K.Kato,K.Ikeda,PTP108('02)133, H.Sagawa,B.A.Brown,H.Esbensen,PLB309('93)1. 20

11Li with 9LiTOSM+n+n cluster model System is solved based on RGM 9Li 11Li TOSM basis Orthogonality Condition Model (OCM) is applied. 21 TM, K.Kato, H.Toki, K.Ikeda PRC76(2007)024305

Energy surface for b-parameter in 9Li TOSM Vtensor is optimized with shrunk HO basis pairing correlation nn Dominant part of the tensor correlation pn cf. 1st order (residual interaction): T. Otsuka et al. PRL95(2005)232502.

11Li properties (S2n=0.31 MeV) Simon et al. Rm P(s2) Tensor (pn) +Pairing (nn) DE = 0.1MeV Pairing correlation between halo neutrons couples (0p)2 and (1s)2 TM, K.Kato, H.Toki, K.Ikeda, PRC76(2007)024305 TM, Y.Kikuchi, K.Kato, H.Toki, K.Ikeda, PTP119(2008)561 23

Coulomb breakup strength of 11Li No three-body resonance E1 strength by using the Green’s function method +Complex scaling method +Equivalent photon method (TM et al., PRC63(’01)) T.Myo, K.Kato, H.Toki, K.Ikeda PRC76(2007)024305 Expt: T. Nakamura et al. , PRL96,252502(2006) Energy resolution with    =0.17 MeV. 24

Virtual s-wave states in 10Li Expt. M. Thoennessen et al., PRC59 (1999)111. M. Chartier et al. PLB510(2001)24. H.B. Jeppesen et al. PLB642(2006)449. 1s1/2 virtual state: as : scattering length of 9Li+n as = –10 ~ –25 fm Inert core Tensor +Pairing 1- +1.4 fm –5.6 fm 2- +0.8 fm –17.4 fm Pauli-blocking naturally describes virtual s-state in 10Li T.M. et al., PTP119(’08)561 arXiv:0803.0590 25 25

Summary TOSM+UCOM with bare nuclear force. 4He contains much “pn-pair of p1/2”. He isotopes with p3/2 has large contributions of Vtensor & Kinetic energy. Halo formation in 11Li with tensor and pairing correlations. Review Di-neutron clustering and deuteron-like tensor correlation in nuclear structure focusing on 11Li K. Ikeda, T. Myo, K. Kato and H. Toki Springer, Lecture Notes in Physics 818 (2010) “Clusters in Nuclei” Vol.1, 165-221. 26 26

Charge Radii of Li isotopes RC-2n Charge Radius 11Li 9Li Inert core Tensor +Pairing Expt. (Sanchez et al., PRL96(‘06)) RC-2n 4.67 5.69 [fm] P(s2) 4 47 % 27

2n correlation density in 11Li Di-neutron type config. Cigar type config. H.Esbensen and G.F.Bertsch, NPA542(1992)310 28 28 28 K. Hagino and H. Sagawa, PRC72(2005)044321

11Li G.S. properties (S2n=0.31 MeV) Rm Simon et al. P(s2) Tensor +Pairing (nn) (pn) E(s2)-E(p2) 2.1 1.4  0.5 -0.1 [MeV] Pairing correlation couples (0p)2 and (1s)2 for last 2n 29