Magnitude Comparator Lecture L6.2 Section 6.1.

Slides:



Advertisements
Similar presentations
ENGIN112 L15: Magnitude Comparator and Multiplexers October 6, 2003 ENGIN 112 Intro to Electrical and Computer Engineering Lecture 15 Magnitude Comparators.
Advertisements

Adders Module M8.1 Section 6.2. Adders Half Adder Full Adder TTL Adder.
Modulo-N Counters Module M10.4 Section 7.2.
Encoders Module M9.3 Section 6.3. Encoders Priority Encoders TTL Encoders.
//HDL Example 4-10 // //Gate-level description of circuit of Fig. 4-2 module analysis (A,B,C,F1,F2); input.
CDA 3100 Recitation Week 10.
Logic Circuits Design presented by Amr Al-Awamry
Demultiplexers Module M6.4 Section 6.4. Demultiplexers YIN 1 x 4 DeMUX d0d1 Y0 Y1 Y2 Y3 Y0 Y1 Y2 Y3 d1d0 0 0 YIN YIN YIN
Verilog Modules for Common Digital Functions
7-Segment Displays Lecture L6.1 Section 6.3. Turning on an LED.
Comparators Combinational Design.
Magnitude Comparator Lecture L6.4 Section 6.1.
Comparator.
Binary-to-BCD Converter Lecture L6.2 Section 6.5 pp
Lecture. Outline Bits Gates Combinatorial Logic Spice Hands-On Stuff.
Lecture 3 Karnaugh Map Chapter 2 Jack Ou, Ph.D.. Home Alarm Logic.
Using State Machines as Control Circuits Lecture L9.4.
Multiplier Lecture L7.3 Section 10.4 (p.276) Section 7.3 (Handout)
Multiplexers Lecture L6.4 Section 6.4.
CS 151 Digital Systems Design Lecture 15 Magnitude Comparators and Multiplexers.
Subtractors Module M8.2 Section 6.2. Subtractors Half Subtractor Full Subtractor Adder/Subtractor - 1 Adder/Subtractor - 2.
Designing State Machines Lecture L9.2 Handout Section 9.2.
Digital Electronics Dan Simon Cleveland State University ESC 120 Revised December 30, 2010.
Equality Detector Lecture L6.1 Section 6.1. Equality Detector XNOR X Y Z Z = !(X $ Y) X Y Z
Shifter Lecture L7.4 Group HW #4 Section 10.3.
1 Comparators Discussion D A 1-Bit Comparator The variable Gout is 1 if x > y or if x = y and Gin = 1. The variable Eout is 1 if x = y and Gin =
Digital Design Copyright © 2006 Frank Vahid 1 a b F InputsOutput a'b'a' b Converting among Representations Can convert from any representation.
Codes and Code Converters
Code Converters Module M7.1 Section 6.5. Code Converters Binary-to-BCD Converters ABEL TRUTH_TABLE Command.
Arithmetic Logic Unit (ALU) Lecture L7.5 Section 7.5.
Pulse-Width Modulated DAC Lecture 11.3 Section 11.5.
Multiplexers Module M6.1 Section 6.4. Multiplexers A 4-to-1 MUX TTL Multiplexer A 2-to-1 MUX.
2’s Complement 4-Bit Saturator
Adders Lecture L7.1 Section 6.2 Section 10.4 (pp )
Shifters Lecture L7.4 Section 7.4. MODULE shift TITLE 'shifter' DECLARATIONS " INPUT PINS " D3..D0 PIN 11,7,6,5; D = [D3..D0]; s2..s0 PIN 3,2,1; S.
Decoders Module M9.1 Section 6.3. Decoders TTL Decoders.
Equality Detector Lecture L6.3 Section 6.1. Equality Detector XNOR X Y Z Z = !(X $ Y) X Y Z
7-Segment Displays Module M7.2 Section 6.5. Turning on an LED Common Anode.
Equality Detector Module M5.1 Section 6.1. Equality Detector XNOR X Y Z Z = !(X $ Y) X Y Z
1 Carry-Ripple Adder Using full-adder instead of half-adder for first bit, we can include a “carry in” bit in the addition –Will be useful later when we.
CS 140 Lecture 6 Professor CK Cheng UC San Diego.
Multiplexers Lecture L6.6v Section 6.2. Multiplexers A Digital Switch A 2-to-1 MUX A 4-to-1 MUX A Quad 2-to-1 MUX The Verilog if…else Statement TTL Multiplexer.
ENGIN112 L12: Circuit Analysis Procedure September 29, 2003 ENGIN 112 Intro to Electrical and Computer Engineering Lecture 12 Circuit Analysis Procedure.
Address Decoders Lecture L6.10 Section 6.3. MOUSE Layout PROM 2716 RAM 6810 MPU 6802 PIA 6821 Address Bus (16 lines) Data Bus (8 lines) To outside world.
Lecture 13 Problems (Mano)
Engineering 100 Section 250 Combinational Logic -- Examples 9/13/2010.
More Examples Dataflow/Behavioral Modeling Section 4.12.
Digital Design Lecture 10 Sequential Design. State Reduction Equivalent Circuits –Identical input sequence –Identical output sequence Equivalent States.
Digital Electronics.
Digital Systems I EEC 180A Lecture 4 Bevan M. Baas.
Lab 6 Module M8.3. EXPERIMENT 6: Adder/Subtractor PRE-LAB 1.Read and understand text Sec. 6.2, Adders and Subtractors, pages Using textbook.
Eng. Mohammed Timraz Electronics & Communication Engineer University of Palestine Faculty of Engineering and Urban planning Software Engineering Department.
Abdullah Said Alkalbani University of Buraimi
4.6 Model Direct Variation
© 2009 Pearson Education, Upper Saddle River, NJ All Rights ReservedFloyd, Digital Fundamentals, 10 th ed Digital Logic Design Dr. Oliver Faust.
Boolsk algebra. Logiske funktioner i Peel PEEL 18CV8 logic diagram.
UNIT 8 COMBINATIONAL CIRCUIT DESIGN AND SIMULATION USING GATES
Comparators Combinational Design. Comparators Equality and Magnitude Comparators –CSE 171 (Designed using CUPL) TTL Comparators Comparator Networks Cascading.
Logiske funktioner i Peel. PEEL 18CV8 logic diagram.
Magnitude Comparator Module M5.2 Section 6.1.
Logic Design Review – 2 Basic Combinational Circuits
Digital Logic & Design Dr. Waseem Ikram Lecture No. 16.
Behavioral/RTL Description (HDL)
EEL 3705 / 3705L Digital Logic Design
Gates Type AND denoted by X.Y OR denoted by X + Y NOR denoted by X + Y
Data Flow Description of Combinational-Circuit Building Blocks
Programmable Logic Devices
Lecture 5 Binary Operation Boolean Logic. Binary Operations Addition Subtraction Multiplication Division.
Single bit comparator Single bit comparator 4/10/2007 DSD,USIT,GGSIPU
ACOE101: Freshman Computer Engineering Fall 2018
Presentation transcript:

Magnitude Comparator Lecture L6.2 Section 6.1

4-Bit Equality Detector A_EQ_B B[3..0]

Magnitude Comparator A_LT_B A[3..0] Magnitude Detector A_EQ_B B[3..0] A_GT_B

Magnitude Comparator How can we find A_GT_B? How many rows would a truth table have? 28 = 256!

Magnitude Comparator Find A_GT_B Because A3 > B3 i.e. A3 & !B3 = 1 If A = 1001 and B = 0111 is A > B? Why? Therefore, one term in the logic equation for A_GT_B is A3 & !B3

Magnitude Comparator A_GT_B = A3 & !B3 # ….. Because A3 = B3 and # ….. Because A3 = B3 and A2 > B2 i.e. C3 = 1 and A2 & !B2 = 1 If A = 1101 and B = 1011 is A > B? Why? Therefore, the next term in the logic equation for A_GT_B is C3 & A2 & !B2

Magnitude Comparator A_GT_B = A3 & !B3 # C3 & A2 & !B2 # ….. # ….. Because A3 = B3 and A2 = B2 and A1 > B1 i.e. C3 = 1 and C2 = 1 and A1 & !B1 = 1 If A = 1010 and B = 1001 is A > B? Why? Therefore, the next term in the logic equation for A_GT_B is C3 & C2 & A1 & !B1

Magnitude Comparator A_GT_B = A3 & !B3 # C3 & A2 & !B2 # C3 & C2 & A1 & !B1 # ….. Because A3 = B3 and A2 = B2 and A1 = B1 and A0 > B0 i.e. C3 = 1 and C2 = 1 and C1 = 1 and A0 & !B0 = 1 If A = 1011 and B = 1010 is A > B? Why? Therefore, the last term in the logic equation for A_GT_B is C3 & C2 & C1 & A0 & !B0

Magnitude Comparator A_GT_B = A3 & !B3 # C3 & A2 & !B2 # C3 & C2 & A1 & !B1 # C3 & C2 & C1 & A0 & !B0

Magnitude Comparator Find A_LT_B A_LT_B = !A3 & B3 # C3 & !A2 & B2 # C3 & C2 & !A1 & B1 # C3 & C2 & C1 & !A0 & B0

ABEL Program MODULE magcomp4 TITLE '4-BIT COMPARATOR, R. Haskell, 9/21/02‘ DECLARATIONS " INPUT PINS " A3..A0 PIN 6, 7, 11, 5; A = [A3..A0]; B3..B0 PIN 72, 71, 66, 70; B = [B3..B0]; " OUTPUT PINS " A_EQ_B PIN 36; A_LT_B PIN 37; A_GT_B PIN 35; C3..C0 NODE; C = [C3..C0];

ABEL Program (cont.) EQUATIONS C = !(A $ B); A_EQ_B = C0 & C1 & C2 & C3; A_GT_B = A3 & !B3 # C3 & A2 & !B2 # C3 & C2 & A1 & !B1 # C3 & C2 & C1 & A0 & !B0; A_LT_B = !A3 & B3 # C3 & !A2 & B2 # C3 & C2 & !A1 & B1 # C3 & C2 & C1 & !A0 & B0;

ABEL Program (cont.) test_vectors ([A, B] -> [A_EQ_B, A_LT_B, A_GT_B]) [0, 0] -> [1, 0, 0]; [2, 5] -> [0, 1, 0]; [10, 12] -> [0, 1, 0]; [7, 8] -> [0, 1, 0]; [4, 2] -> [0, 0, 1]; [6, 6] -> [1, 0, 0]; [1, 7] -> [0, 1, 0]; [5, 13] -> [0, 1, 0]; [12, 0] -> [0, 0, 1]; [6, 3] -> [0, 0, 1]; [9, 9] -> [1, 0, 0]; [12, 13] -> [0, 1, 0]; [7, 0] -> [0, 0, 1]; [4, 1] -> [0, 0, 1]; [3, 2] -> [0, 0, 1]; [15, 15] -> [1, 0, 0]; END

TTL Comparators 1 2 3 4 5 6 7 9 10 11 12 8 19 20 17 18 15 16 13 14 GND Vcc P>Q P0 Q0 P1 Q1 P2 Q2 P3 Q3 P=Q Q7 P7 Q6 P6 Q5 P5 Q4 P4 74LS682 B3 A<Bin A=Bin A>Bin A>Bout A=Bout A<Bout A3 B2 A2 A1 B1 A0 B0 74LS85

Cascading two 74LS85s