ACM Symposium on Parallel Algorithms and

Slides:



Advertisements
Similar presentations
Routing and Congestion Problems in General Networks Presented by Jun Zou CAS 744.
Advertisements

Convex Optimization Chapter 1 Introduction. What, Why and How  What is convex optimization  Why study convex optimization  How to study convex optimization.
ISEN 601 Location Logistics
P2P Network for Very Large Virtual Environment Proceedings of the ACM symposium on virtual reality software and technology VRST '06.
Server-Based Smoothing of Variable Bit-Rate Streams Stergios V. Anastasiadis, Kenneth C. Sevcik, and Michael Stumm ACM Multimedia 2001.
Peer-to-Peer Based Multimedia Distribution Service Zhe Xiang, Qian Zhang, Wenwu Zhu, Zhensheng Zhang, and Ya-Qin Zhang IEEE TRANSACTIONS ON MULTIMEDIA,
Session 2: How to catalog Body of Knowledge (BoK) in an area?
LPT for Data Aggregation in Wireless Sensor Networks Marc Lee and Vincent W.S. Wong Department of Electrical and Computer Engineering, University of British.
Survivable Logical Topology Design in WDM Optical Ring Networks Hwajung Lee, Hongsik Choi, Suresh Subramaniam, and Hyeong-Ah Choi* The George Washington.
Genetic Algorithm for Multicast in WDM Networks Der-Rong Din.
Ensemble of ensemble of tree and neural network Louis Duclos-Gosselin.
DUP: Dynamic-tree Based Update Propagation in Peer-to-Peer Networks Liangzhong Yin and Guohong Cao ICDE 2005 Speak: Weishiu Lee.
An Improved Algorithm to Accelerate Regular Expression Evaluation Author: Michela Becchi, Patrick Crowley Publisher: 3rd ACM/IEEE Symposium on Architecture.
A Memory-efficient Huffman Decoding Algorithm
Resource-Aware Video Multicasting via Access Gateways in Wireless Mesh Networks IEEE Transactions on Mobile Computing,Volume 11,Number 6,June 2012 Authors.
Scheduling Optimization in Wireless MESH Networks with Power Control and Rate Adaptation SECON 2006 Antonio Capone and Giuliana Carello Keon Jang 2007.
Adding SubtractingMultiplyingDividingMiscellaneous.
Energy-Conserving Data Placement and Asynchronous Multicast in Wireless Sensor Networks Sagnik Bhattacharya, Hyung Kim, Shashi Prabh, Tarek Abdelzaher.
Author: Weirong Jiang and Viktor K. Prasanna Publisher: ACM Symposium on Parallel Algorithms and Architectures, SPAA 2009 Presenter: Chin-Chung Pan Date:
{ Adaptive Relevance Feedback in Information Retrieval Yuanhua Lv and ChengXiang Zhai (CIKM ‘09) Date: 2010/10/12 Advisor: Dr. Koh, Jia-Ling Speaker: Lin,
In The Name of God. Parallel processing Course Evaluation  Final Exam is closed book( 14 Scores)  Research and Presentation, Quizzes (5 Scores)  No.
Optimizing server placement in distributed systems in the presence of competition Jan-Jan Wu( 吳真貞 ), Shu-Fan Shih ( 施書帆 ), Pangfeng Liu ( 劉邦鋒 ), Yi-Min.
Junchao Ma +, Wei Lou +, Yanwei Wu *, Xiang-Yang Li *, and Guihai Chen & Energy Efficient TDMA Sleep Scheduling in Wireless Sensor Networks + Department.
Virtual-Topology Adaptation for WDM Mesh Networks Under Dynamic Traffic.
SUNY Oneonta Data Structures and Algorithms Visualization Teaching Materials Generation Group AVL Tree Insertion and Deletion Demo.
Peer-to-Peer Networks 09 Random Graphs for Peer-to-Peer-Networks Christian Schindelhauer Technical Faculty Computer-Networks and Telematics University.
1 Introduction to Neural Networks Recurrent Neural Networks.
Optimizing Interconnection Complexity for Realizing Fixed Permutation in Data and Signal Processing Algorithms Ren Chen, Viktor K. Prasanna Ming Hsieh.
Introduction to Android Programming. Features of Android.
Information Systems and Network Engineering Laboratory II
Golrezaei, N. ; Molisch, A.F. ; Dimakis, A.G.
Data Center Network Architectures
Mesh-based Geocast Routing Protocols in an Ad Hoc Network
Chapter 7: Introduction to Data Communications and Networking
Welcome to our Microsoft Outlook 2013 Training Course
Author: Ragalatha P, Manoj Challa, Sundeep Kumar. K
C.-S. Shieh, EC, KUAS, Taiwan
Outline Introduction Routing in Mobile Ad Hoc Networks
Multipliers Multipliers play an important role in today’s digital signal processing and various other applications. The common multiplication method is.
Computer Architecture Introduction to Data-Parallel architectures
Frank Yeong-Sung Lin (林永松) Information Management Department
Guaranteed Minimum-Rank Solutions of Linear Matrix Equations via Nuclear Norm Minimization Presenter: Xia Li.
DETERMINANT definition and origin.
Raymond'S Tree DMX Algorithm
The Importance of Communities for Learning to Influence
Machine Learning Techniques for the Evaluating of External Skeletal Fixation Structure Dr.Khaled Rasheed Dr. Walter D. Potter Dr. Dennis N. Aron Ning Suo.
Designing Algorithms for Multiplication of Fractions
Introduction to Transportation Engineering
Marc P. Scherer, Anthony W. Gummer  Biophysical Journal 
Depth-First Searches Introduction to AI.
Example of A* A (4,0) 4 OPEN: (A4) CLOSED: ().
Introduction to Neural Networks
ISEN 601 Location Logistics
Outline Ming Li, Deepak Ganesan and Prashant Shenoy, PRESTO: Feedback-Driven Data Management in Sensor Networks, Proceedings of the Third ACM/USENIX.
Solving the Minimum Labeling Spanning Tree Problem
Resource Allocation in a Middleware for Streaming Data
Smart Content Delivery in Large Networks: En-Route Caching
Controllable and Trustworthy Blockchain-based Cloud Data Management
Frank Yeong-Sung Lin (林永松) Information Management Department
Adding with 9’s.
Adding with 10’s.
Bjarne Berg UNC-Charlotte
Warm Up – Tuesday Find the critical times for each vertex.
Adding ____ + 10.
Transport Layer Identification of P2P Traffic
Handling Degeneracies in Exact Boundary Evaluation
Author’s Name(s) and Affiliation(s)
A Neural Network for Car-Passenger matching in Ride Hailing Services.
Depth-First Searches.
BUILDING A BLOCKCHAIN USING PYTHON
Presentation transcript:

ACM Symposium on Parallel Algorithms and The Push Tree Problem Frederic Havet, Marc Wennink ACM Symposium on Parallel Algorithms and Architectures, 2001 Networks 2004

Outline F I n t r o d u c i P b l e m a S O s v T h C H f G R D 2019/4/25

Outline F I n t r o d u c i P b l e m a S O s v T h C H f G R D 2019/4/25

Introduction I n f o r m a t i d s b u y e g l c p h - . A , v ( ) q 2019/4/25

Introduction O n e o f t h m a i r s u g p c - ± y . H w v , d b l T q 2019/4/25

Introduction I n g e r a l , m i x t u o f p s h d c b : w k - q . y ¯ v ± 2019/4/25

Outline F I n t r o d u c i P b l e m a S O s v T h C H f G R D 2019/4/25

Problem Formulation and Some Observations G = ( V ) ; E b a n u d i r c g p h , l v > o f 2 . M H P s T m w ¹ ¸ q R µ 8 F y + X 2019/4/25

Problem Formulation and Some Observations h e s o u r c n d t a i p f m g ¹ . A v y , - l V ( P ) E ± q w z R 2 b + F = 1 2019/4/25

Problem Formulation and Some Observations y o h , n p m l u P T r . M v f g q d ± c ¯ S ¹ R b - [ k w G N O ( + ) 2019/4/25

Problem Formulation and Some Observations c o u l d s a y t h P T r p b m g f S i , ¹ . L w = [ v 2 R A ¯ ± I ( ) G 2019/4/25

Outline F I n t r o d u c i P b l e m a S O s v T h C H f G R D 2019/4/25

The Tree Case V L e t l o a d f n g i s ¸ ( ) = P r . T h u w ¹ 3 c b 4 4 4 4 16 s 11 1 4 1 7 1 2 4 2 1 2 2 1 5 5 2 1 2 V 2 e L e t l o a d f n g i s ¸ ( ) = P v 2 V r . T h u w ¹ 3 c b m p O j E S ¯ y q W ; ± z 2019/4/25

Outline F I n t r o d u c i P b l e m a S O s v T h C H f G R D 2019/4/25

Heuristics For The General Case W e h a v l r d y k n o w t p i m s u P T b . g c , ¤ f ± 2019/4/25

Heuristics For The General Case P r o p s i t n 1 F a y ½ > , h e x c f u T b l m w ( S ) ¤ W d s ¹ = 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ² ² ² ² ² ² ² ² u H e r , w ( S P T t h g n l i ) = b u ¤ a c k 1 + ² 2019/4/25

Heuristics For The General Case P r o p s i t n 2 F a y ½ > , h e x c f u T b l m w ( M S ) ¤ W g s 1 1 + ² 1 + ² 1 + ² 1 + ² 1 + ² 1 + ² 1 + ² 1 1 1 1 1 1 1 1 H e r , w ( M S T t h g n l i ) = b u ¤ d 1 + ² 2019/4/25

Heuristics For The General Case m 1 C n s i d a t c f P u p b l w ¹ ( z ) q = v 2 R , L x + - S ½ . ¤ · £ ; ¸ g 2019/4/25

Outline F I n t r o d u c i P b l e m a S O s v T h C H f G R D 2019/4/25

Robustness S u p o s e t h a w v b i n d r g l m - f c q . H y ¯ ? W ® , R 2019/4/25

Robustness Increasing and Decreasing Requests Almost Uniformly P r o p s i t n 3 L e · ¸ 1 a d l ; b w q u f c h ( v ) 2 R . F y g , T = m ¹ C x S V G ¤ 2019/4/25

Robustness Increasing and Decreasing Requests Almost Uniformly W e n o w p r v t h f l i g m a s d - x P u T b q c ; . 2 C L · ² » < 1 , ( ¡ ) + 8 R ½ ¸ ¤ = : B 2019/4/25

Robustness Adding Requests ± Robustness Adding Requests s 1 k P r o p s i t n 4 F a y ½ ¸ 1 , h e x c f u T b l m w q d g ; ( ) ¤ > v = ¹ . L k 2 ± 3 C G : + · 2019/4/25

Robustness Removing Requests ¡ 1 ± 1 1 M-1 u w v 1/0 1 P r o p s i t n 5 F a y ± > , h e x c f u T b l m w q d g ( ) · 1 + ¤ ; ¸ M v = . C ¡ N W 2019/4/25

Robustness Removing Requests c e h a b v p r s n l y d f ± > . T u - m w g ( = ) 3 C P x q W ¯ , ; < L · ¡ ¹ ¤ H z 2019/4/25

Outline F I n t r o d u c i P b l e m a S O s v T h C H f G R D 2019/4/25

Discussion W e m a y c o n s i d r l t f : F h k g p u T v b q - P A , 2019/4/25