Arijit Maitra, Ken A. Dill  Biophysical Journal 

Slides:



Advertisements
Similar presentations
Inhibitor Binding Increases the Mechanical Stability of Staphylococcal Nuclease Chien-Chung Wang, Tian-Yow Tsong, Yau-Heiu Hsu, Piotr E. Marszalek Biophysical.
Advertisements

Masahiro Ueda, Tatsuo Shibata  Biophysical Journal 
Kinetic Hysteresis in Collagen Folding
Role of Hydration Water in Protein Unfolding
Steady-State Differential Dose Response in Biological Systems
A Basic Set of Homeostatic Controller Motifs
Peter J. Mulligan, Yi-Ju Chen, Rob Phillips, Andrew J. Spakowitz 
Volume 101, Issue 4, Pages (August 2011)
Kinetic Analysis of High Affinity Forms of Interleukin (IL)-13 Receptors: Suppression of IL-13 Binding by IL-2 Receptor γ Chain  Vladimir A. Kuznetsov,
Volume 107, Issue 10, Pages (November 2014)
FoldEco: A Model for Proteostasis in E. coli
Mechanisms of Receptor/Coreceptor-Mediated Entry of Enveloped Viruses
Luthur Siu-Lun Cheung, Konstantinos Konstantopoulos 
Jai A. Pathak, Rumi R. Sologuren, Rojaramani Narwal 
Emily I. Bartle, Tara M. Urner, Siddharth S. Raju, Alexa L. Mattheyses 
Qiaochu Li, Stephen J. King, Ajay Gopinathan, Jing Xu 
Volume 103, Issue 4, Pages (August 2012)
Francesca Pennacchietti, Travis J. Gould, Samuel T. Hess 
Yi Qin Gao, Wei Yang, Martin Karplus  Cell 
Volume 109, Issue 5, Pages (September 2015)
Volume 105, Issue 10, Pages (November 2013)
The Ribosome Emerges from a Black Box
Volume 100, Issue 5, Pages (March 2011)
Volume 113, Issue 4, Pages (August 2017)
Francis D. Appling, Aaron L. Lucius, David A. Schneider 
Hao Yuan Kueh, Philipp Niethammer, Timothy J. Mitchison 
Stationary Gating of GluN1/GluN2B Receptors in Intact Membrane Patches
Paolo Mereghetti, Razif R. Gabdoulline, Rebecca C. Wade 
Volume 103, Issue 2, Pages (July 2012)
Florian Hinzpeter, Ulrich Gerland, Filipe Tostevin  Biophysical Journal 
Volume 110, Issue 1, Pages (January 2016)
Kinetic Hysteresis in Collagen Folding
Mechanical Control of Bacterial Cell Shape
Luthur Siu-Lun Cheung, Konstantinos Konstantopoulos 
Alexandra Witthoft, Jessica A. Filosa, George Em Karniadakis 
Volume 83, Issue 2, Pages (August 2002)
Volume 101, Issue 4, Pages (August 2011)
Daniel Krofchick, Mel Silverman  Biophysical Journal 
Velocity-Dependent Mechanical Unfolding of Bacteriorhodopsin Is Governed by a Dynamic Interaction Network  Christian Kappel, Helmut Grubmüller  Biophysical.
Dynamics of Active Semiflexible Polymers
Kinetics of Surface-Driven Self-Assembly and Fatigue-Induced Disassembly of a Virus- Based Nanocoating  Alejandro Valbuena, Mauricio G. Mateu  Biophysical.
Dynamics of the BH3-Only Protein Binding Interface of Bcl-xL
Toshinori Namba, Masatoshi Nishikawa, Tatsuo Shibata 
Mathematical Modeling of the Heat-Shock Response in HeLa Cells
Theodore R. Rieger, Richard I. Morimoto, Vassily Hatzimanikatis 
Rikiya Watanabe, Makoto Genda, Yasuyuki Kato-Yamada, Hiroyuki Noji 
Andrew E. Blanchard, Chen Liao, Ting Lu  Biophysical Journal 
Phosphatase Specificity and Pathway Insulation in Signaling Networks
Cell Growth and Size Homeostasis in Silico
Christina Bergonzo, Thomas E. Cheatham  Biophysical Journal 
Volume 108, Issue 9, Pages (May 2015)
Matthew J. Westacott, Nurin W.F. Ludin, Richard K.P. Benninger 
Brownian Dynamics of Subunit Addition-Loss Kinetics and Thermodynamics in Linear Polymer Self-Assembly  Brian T. Castle, David J. Odde  Biophysical Journal 
Volume 98, Issue 10, Pages (May 2010)
Steady-State Differential Dose Response in Biological Systems
A Multiscale Model for Avascular Tumor Growth
Mechanical Coupling between Myosin Molecules Causes Differences between Ensemble and Single-Molecule Measurements  Sam Walcott, David M. Warshaw, Edward P.
Volume 84, Issue 4, Pages (April 2003)
Insights from Free-Energy Calculations: Protein Conformational Equilibrium, Driving Forces, and Ligand-Binding Modes  Yu-ming M. Huang, Wei Chen, Michael J.
Volume 111, Issue 5, Pages (September 2016)
Mahendra Kumar Prajapat, Kirti Jain, Supreet Saini  Biophysical Journal 
Joana Pinto Vieira, Julien Racle, Vassily Hatzimanikatis 
Hyper-Mobile Water Is Induced around Actin Filaments
Paolo Mereghetti, Razif R. Gabdoulline, Rebecca C. Wade 
Malin Persson, Elina Bengtsson, Lasse ten Siethoff, Alf Månsson 
Volume 96, Issue 2, Pages L7-L9 (January 2009)
Torque Transmission Mechanism via DELSEED Loop of F1-ATPase
Kinetic Analysis of High Affinity Forms of Interleukin (IL)-13 Receptors: Suppression of IL-13 Binding by IL-2 Receptor γ Chain  Vladimir A. Kuznetsov,
Volume 108, Issue 9, Pages (May 2015)
Volume 98, Issue 3, Pages (February 2010)
Presentation transcript:

Modeling the Overproduction of Ribosomes when Antibacterial Drugs Act on Cells  Arijit Maitra, Ken A. Dill  Biophysical Journal  Volume 110, Issue 3, Pages 743-748 (February 2016) DOI: 10.1016/j.bpj.2015.12.016 Copyright © 2016 The Authors Terms and Conditions

Figure 1 Minimal kinetic model of E. coli. The model expresses the dynamical fluxes (arrows) and concentrations of active ribosomes (Ract), nonribosomal proteins (P), and a lumped internal energy (ATP). The double arrow shows a positive feedback mechanism for ribosomal autosynthesis, a key controller of growth behavior. Antibiotic inhibitor molecules are represented by X. X binds reversibly with active ribosomes. While in the bound form, Rin, the ribosomes are inactivated, and they do not translate proteins. P degrades with rate constant γ. The cell grows exponentially, with a specific growth rate of λ. Biophysical Journal 2016 110, 743-748DOI: (10.1016/j.bpj.2015.12.016) Copyright © 2016 The Authors Terms and Conditions

Figure 2 E. coli physiological correlations. (A) Growth rate versus extracellular glucose concentration from a simulation for antibiotic (chloramphenicol) concentrations of 0, 2.1, and 6.4 μM. (B) Dependence of growth rate, λ, on antibiotic concentration, x. The line is the numerical solution of the ODE model, with G = 0.08 mM (red line). Red solid circles represent the experimental data (10) of E. coli grown on glucose + M63. Biophysical Journal 2016 110, 743-748DOI: (10.1016/j.bpj.2015.12.016) Copyright © 2016 The Authors Terms and Conditions

Figure 3 E. coli ribosomal protein fraction versus growth rates. Numerical solutions of the ODE model, with increasing glucose concentrations (in mM) G = 0.04 (blue), 0.05 (green), 0.08 (red), and 0.125 (purple), and antibiotic concentrations x = 0 → 25 μM (arrows). Circles represent the experimental data (10) for E. coli grown on glucose + M63 at different dosages of chloramphenicol (in μM). To get ϕ, the rRNA/protein ratio from Scott et al. (10) is scaled by a factor of 0.46 (20). The black line represents the prediction from theory (Eq. 18), with fp=fp∞=0.7, kp'=9.65 h−1, γ = 0.1 h−1, and α = 1 (absence of drugs). Biophysical Journal 2016 110, 743-748DOI: (10.1016/j.bpj.2015.12.016) Copyright © 2016 The Authors Terms and Conditions

Figure 4 Effect of ribosomal inhibitors on cellular homeostasis. Lines are scaled numerical solutions of the ODE model, with G = 0.08 mM. The orange line represents the active ribosomes, [α(x)/α(x = 0)], as a function of drug concentration, x. The red line represents the total ribosomes, [ϕtot(x)/ϕtot(x = 0)]. The black line represents the fraction of active ribosomes that are producing ribosomal proteins, [ϕrr(x)/ϕrr(x = 0)] (Eq. 19). Also see Figs. S2–S4. Biophysical Journal 2016 110, 743-748DOI: (10.1016/j.bpj.2015.12.016) Copyright © 2016 The Authors Terms and Conditions

Figure 5 Effect of ribosomal inhibitors on ribosomal activity. The symbols show the rate of ribosomal synthesis, Jfr = MrJr/ρ, versus specific growth rate of E. coli converted from the experimental ϕ − k data. Chloramphenicol concentrations (in μM) are indicated inside the circles. Nutrients were M63 + glucose (red) at T = 37 C (10). Gray solid circles represent experimental data (10) in the absence of drugs. To get ϕ, the rRNA/protein ratio from Scott et al. (10) is scaled by a factor of 0.46 (20). The blue line represents the ODE model prediction at constant G = 0.04 mM with chloromaphenicol varied according to x = 0 → 15 μM (arrow). The black line represents the theoretical prediction (Eq. 21) in the absence of drugs, with fp=fp∞=0.7, γ=0.1 h−1, and kp'=9.65 h−1. Also see Fig. S1. Biophysical Journal 2016 110, 743-748DOI: (10.1016/j.bpj.2015.12.016) Copyright © 2016 The Authors Terms and Conditions

Figure 6 Effect of ribosomal inhibitors on the rate of energy metabolism. Shown are predictions of the rate of energy metabolism versus growth rate, λ, from the ODE model with glucose varied, G = 0 − 1 mM, and no drugs (black line), and the prediction at G = 0.04 mM (red line), with the drug dosage varied according to x = 0 → 15 μM (arrow). An increase in drug concentration reduces both rates of growth and energy generation. Biophysical Journal 2016 110, 743-748DOI: (10.1016/j.bpj.2015.12.016) Copyright © 2016 The Authors Terms and Conditions