Psych 231: Research Methods in Psychology

Slides:



Advertisements
Similar presentations
Using Statistics in Research Psych 231: Research Methods in Psychology.
Advertisements

Using Statistics in Research Psych 231: Research Methods in Psychology.
Using Statistics in Research Psych 231: Research Methods in Psychology.
Using Statistics in Research Psych 231: Research Methods in Psychology.
Statistics for the Social Sciences Psychology 340 Fall 2006 Hypothesis testing.
Understanding Statistics in Research
Statistics for the Social Sciences Psychology 340 Spring 2005 Hypothesis testing.
Statistics for the Social Sciences Psychology 340 Fall 2006 Hypothesis testing.
Statistics for the Social Sciences
Using Statistics in Research Psych 231: Research Methods in Psychology.
Using Statistics in Research Psych 231: Research Methods in Psychology.
Inferential Statistics
Statistics for the Social Sciences
Tuesday, September 10, 2013 Introduction to hypothesis testing.
Talks & Statistics (wrapping up) Psych 231: Research Methods in Psychology.
Chapter 8 Introduction to Hypothesis Testing
Statistics (cont.) Psych 231: Research Methods in Psychology.
Statistics Psych 231: Research Methods in Psychology.
Statistics (cont.) Psych 231: Research Methods in Psychology.
Chapter 10: Analyzing Experimental Data Inferential statistics are used to determine whether the independent variable had an effect on the dependent variance.
Statistics Psych 231: Research Methods in Psychology.
Statistics Psych 231: Research Methods in Psychology.
Finishing up: Statistics & Developmental designs Psych 231: Research Methods in Psychology.
Statistics (cont.) Psych 231: Research Methods in Psychology.
Statistics Psych 231: Research Methods in Psychology.
Statistics (cont.) Psych 231: Research Methods in Psychology.
Inferential Statistics Psych 231: Research Methods in Psychology.
Reasoning in Psychology Using Statistics Psychology
Descriptive Statistics Psych 231: Research Methods in Psychology.
Inferential Statistics Psych 231: Research Methods in Psychology.
Psych 231: Research Methods in Psychology
Statistics for the Social Sciences
Inferential Statistics
Non-Experimental designs
Non-Experimental designs
Central Limit Theorem, z-tests, & t-tests
Non-Experimental designs
Reasoning in Psychology Using Statistics
Small-N designs & Basic Statistical Concepts
Psych 231: Research Methods in Psychology
Reasoning in Psychology Using Statistics
Reasoning in Psychology Using Statistics
Psych 231: Research Methods in Psychology
Psych 231: Research Methods in Psychology
Reasoning in Psychology Using Statistics
Statistics for the Social Sciences
Psych 231: Research Methods in Psychology
Psych 231: Research Methods in Psychology
Reasoning in Psychology Using Statistics
Psych 231: Research Methods in Psychology
Psych 231: Research Methods in Psychology
Psych 231: Research Methods in Psychology
Reasoning in Psychology Using Statistics
Psych 231: Research Methods in Psychology
Descriptive Statistics
Statistics for the Social Sciences
What are their purposes? What kinds?
Reasoning in Psychology Using Statistics
Psych 231: Research Methods in Psychology
Inferential Statistics
Psych 231: Research Methods in Psychology
Non-Experimental designs: Developmental and Small-N Designs
Psych 231: Research Methods in Psychology
Psych 231: Research Methods in Psychology
Descriptive Statistics
Reasoning in Psychology Using Statistics
Psych 231: Research Methods in Psychology
Psych 231: Research Methods in Psychology
Psych 231: Research Methods in Psychology
Reasoning in Psychology Using Statistics
Presentation transcript:

Psych 231: Research Methods in Psychology Statistics (cont.) Psych 231: Research Methods in Psychology

Announcements Journal Summary 2 assignment Group projects Due in class this week (Wednesday, Nov. 13th) Group projects Plan to have your analyses done before Thanksgiving break, GAs will be available during lab times to help Poster sessions are last lab sections of the semester (last week of classes), so start thinking about your posters. I will lecture about poster presentations on Monday (a week from today). Announcements

Samples and Populations 2 General kinds of Statistics Descriptive statistics Used to describe, simplify, & organize data sets Describing distributions of scores Inferential statistics Used to test claims about the population, based on data gathered from samples Takes sampling error into account. Are the results above and beyond what you’d expect by random chance? Population Inferential statistics used to generalize back Sample Samples and Populations

Statistics 2 General kinds of Statistics Descriptive statistics Used to describe, simplify, & organize data sets Describing distributions of scores Inferential statistics Used to test claims about the population, based on data gathered from samples Takes sampling error into account. Are the results above and beyond what you’d expect by random chance? Population Inferential statistics used to generalize back Sample Statistics

Inferential Statistics Purpose: To make claims about populations based on data collected from samples What’s the big deal? Population Sample A Treatment X = 80% Sample B No Treatment X = 76% Example Experiment: Group A - gets treatment to improve memory Group B - gets no treatment (control) After treatment period test both groups for memory Results: Group A’s average memory score is 80% Group B’s is 76% Is the 4% difference a “real” difference (statistically significant) or is it just sampling error? Inferential Statistics

Testing Hypotheses Step 1: State your hypotheses Step 2: Set your decision criteria Step 3: Collect your data from your sample(s) Step 4: Compute your test statistics Step 5: Make a decision about your null hypothesis “Reject H0” “Fail to reject H0” Testing Hypotheses

Testing Hypotheses Step 1: State your hypotheses This is the hypothesis that you are testing Null hypothesis (H0) Alternative hypothesis(ses) (HA) “There are no differences (effects)” Generally, “not all groups are equal” You aren’t out to prove the alternative hypothesis (although it feels like this is what you want to do) If you reject the null hypothesis, then you’re left with support for the alternative(s) (NOT proof!) Testing Hypotheses

Testing Hypotheses Step 1: State your hypotheses In our memory example experiment Null H0: mean of Group A = mean of Group B Alternative HA: mean of Group A ≠ mean of Group B (Or more precisely: Group A > Group B) It seems like our theory is that the treatment should improve memory. That’s the alternative hypothesis. That’s NOT the one the we’ll test with inferential statistics. Instead, we test the H0 Testing Hypotheses

Testing Hypotheses Step 1: State your hypotheses Step 2: Set your decision criteria Your alpha level will be your guide for when to: “reject the null hypothesis” “fail to reject the null hypothesis” This could be correct conclusion or the incorrect conclusion Two different ways to go wrong Type I error: saying that there is a difference when there really isn’t one (probability of making this error is “alpha level”) Type II error: saying that there is not a difference when there really is one Testing Hypotheses

Error types Real world (‘truth’) H0 is correct H0 is wrong Type I error Reject H0 Experimenter’s conclusions Fail to Reject H0 Type II error Error types

Error types: Courtroom analogy Real world (‘truth’) Defendant is innocent Defendant is guilty Type I error Find guilty Jury’s decision Type II error Find not guilty Error types: Courtroom analogy

Type I error (α): concluding that there is an effect (a difference between groups) when there really isn’t. Sometimes called “significance level” We try to minimize this (keep it low) Pick a low level of alpha Psychology: 0.05 and 0.01 most common Type II error (β): concluding that there isn’t an effect, when there really is. How likely are you able to detect a difference if it is there Related to the Statistical Power of a test Error types

Testing Hypotheses Step 1: State your hypotheses Step 2: Set your decision criteria Step 3: Collect your data from your sample(s) Step 4: Compute your test statistics Descriptive statistics (means, standard deviations, etc.) Inferential statistics (t-tests, ANOVAs, etc.) Step 5: Make a decision about your null hypothesis Reject H0 “statistically significant differences” Fail to reject H0 “not statistically significant differences” Testing Hypotheses

Statistical significance “Statistically significant differences” When you “reject your null hypothesis” Essentially this means that the observed difference is above what you’d expect by chance “Chance” is determined by estimating how much sampling error there is Factors affecting “chance” Sample size Population variability Statistical significance

(Pop mean - sample mean) Population mean Population Distribution x Sampling error (Pop mean - sample mean) n = 1 Sampling error

(Pop mean - sample mean) Population mean Population Distribution Sample mean x x Sampling error (Pop mean - sample mean) n = 2 Sampling error

(Pop mean - sample mean) Generally, as the sample size increases, the sampling error decreases Population mean Population Distribution Sample mean x Sampling error (Pop mean - sample mean) n = 10 Sampling error

Typically the narrower the population distribution, the narrower the range of possible samples, and the smaller the “chance” Large population variability Small population variability Sampling error

Sampling error Population Distribution of sample means These two factors combine to impact the distribution of sample means. The distribution of sample means is a distribution of all possible sample means of a particular sample size that can be drawn from the population Population Distribution of sample means XC Samples of size = n XA XD Avg. Sampling error XB “chance” Sampling error

Significance “A statistically significant difference” means: the researcher is concluding that there is a difference above and beyond chance with the probability of making a type I error at 5% (assuming an alpha level = 0.05) Note “statistical significance” is not the same thing as theoretical significance. Only means that there is a statistical difference Doesn’t mean that it is an important difference Significance

Non-Significance Failing to reject the null hypothesis Generally, not interested in “accepting the null hypothesis” (remember we can’t prove things only disprove them) Usually check to see if you made a Type II error (failed to detect a difference that is really there) Check the statistical power of your test Sample size is too small Effects that you’re looking for are really small Check your controls, maybe too much variability Non-Significance

Summary to this point XA XB About populations Example Experiment: Group A - gets treatment to improve memory Group B - gets no treatment (control) After treatment period test both groups for memory Results: Group A’s average memory score is 80% Group B’s is 76% H0: μA = μB H0: there is no difference between Grp A and Grp B Real world (‘truth’) H0 is correct H0 is wrong Experimenter’s conclusions Reject H0 Fail to Reject H0 Type I error Type II error Is the 4% difference a “real” difference (statistically significant) or is it just sampling error? Two sample distributions XA XB 76% 80% Summary to this point

“Generic” statistical test Tests the question: Are there differences between groups due to a treatment? H0 is true (no treatment effect) Real world (‘truth’) H0 is correct H0 is wrong Experimenter’s conclusions Reject H0 Fail to Reject H0 Type I error Type II error Two possibilities in the “real world” One population Two sample distributions XA XB 76% 80% “Generic” statistical test

“Generic” statistical test Tests the question: Are there differences between groups due to a treatment? Real world (‘truth’) H0 is correct H0 is wrong Experimenter’s conclusions Reject H0 Fail to Reject H0 Type I error Type II error Two possibilities in the “real world” H0 is true (no treatment effect) H0 is false (is a treatment effect) Two populations XA XB XB XA 76% 80% 76% 80% People who get the treatment change, they form a new population (the “treatment population) “Generic” statistical test

“Generic” statistical test XB XA ER: Random sampling error ID: Individual differences (if between subjects factor) TR: The effect of a treatment Why might the samples be different? (What is the source of the variability between groups)? “Generic” statistical test

“Generic” statistical test XB XA ER: Random sampling error ID: Individual differences (if between subjects factor) TR: The effect of a treatment The generic test statistic - is a ratio of sources of variability Observed difference TR + ID + ER ID + ER Computed test statistic = = Difference from chance “Generic” statistical test

Sampling error Population “chance” Distribution of sample means The distribution of sample means is a distribution of all possible sample means of a particular sample size that can be drawn from the population Population Distribution of sample means XC Samples of size = n XA XD Avg. Sampling error XB “chance” Sampling error

“Generic” statistical test The generic test statistic distribution To reject the H0, you want a computed test statistics that is large reflecting a large Treatment Effect (TR) What’s large enough? The alpha level gives us the decision criterion TR + ID + ER ID + ER Distribution of the test statistic Test statistic Distribution of sample means α-level determines where these boundaries go “Generic” statistical test

“Generic” statistical test The generic test statistic distribution To reject the H0, you want a computed test statistics that is large reflecting a large Treatment Effect (TR) What’s large enough? The alpha level gives us the decision criterion Distribution of the test statistic Reject H0 Fail to reject H0 “Generic” statistical test

“Generic” statistical test The generic test statistic distribution To reject the H0, you want a computed test statistics that is large reflecting a large Treatment Effect (TR) What’s large enough? The alpha level gives us the decision criterion Distribution of the test statistic Reject H0 “One tailed test”: sometimes you know to expect a particular difference (e.g., “improve memory performance”) Fail to reject H0 “Generic” statistical test

“Generic” statistical test Things that affect the computed test statistic Size of the treatment effect The bigger the effect, the bigger the computed test statistic Difference expected by chance (sample error) Sample size Variability in the population “Generic” statistical test

Significance “A statistically significant difference” means: the researcher is concluding that there is a difference above and beyond chance with the probability of making a type I error at 5% (assuming an alpha level = 0.05) Note “statistical significance” is not the same thing as theoretical significance. Only means that there is a statistical difference Doesn’t mean that it is an important difference Significance

Non-Significance Failing to reject the null hypothesis Generally, not interested in “accepting the null hypothesis” (remember we can’t prove things only disprove them) Usually check to see if you made a Type II error (failed to detect a difference that is really there) Check the statistical power of your test Sample size is too small Effects that you’re looking for are really small Check your controls, maybe too much variability Non-Significance

Some inferential statistical tests 1 factor with two groups T-tests Between groups: 2-independent samples Within groups: Repeated measures samples (matched, related) 1 factor with more than two groups Analysis of Variance (ANOVA) (either between groups or repeated measures) Multi-factorial Factorial ANOVA Some inferential statistical tests

T-test Design Formula: Observed difference X1 - X2 T = 2 separate experimental conditions Degrees of freedom Based on the size of the sample and the kind of t-test Formula: Observed difference T = X1 - X2 Diff by chance Based on sample error Computation differs for between and within t-tests T-test

T-test Reporting your results The observed difference between conditions Kind of t-test Computed T-statistic Degrees of freedom for the test The “p-value” of the test “The mean of the treatment group was 12 points higher than the control group. An independent samples t-test yielded a significant difference, t(24) = 5.67, p < 0.05.” “The mean score of the post-test was 12 points higher than the pre-test. A repeated measures t-test demonstrated that this difference was significant significant, t(12) = 5.67, p < 0.05.” T-test

Analysis of Variance XB XA XC Designs Test statistic is an F-ratio More than two groups 1 Factor ANOVA, Factorial ANOVA Both Within and Between Groups Factors Test statistic is an F-ratio Degrees of freedom Several to keep track of The number of them depends on the design Analysis of Variance

Analysis of Variance More than two groups F-ratio = XB XA XC Now we can’t just compute a simple difference score since there are more than one difference So we use variance instead of simply the difference Variance is essentially an average difference Observed variance Variance from chance F-ratio = Analysis of Variance

1 factor ANOVA 1 Factor, with more than two levels XB XA XC Now we can’t just compute a simple difference score since there are more than one difference A - B, B - C, & A - C 1 factor ANOVA

1 factor ANOVA The ANOVA tests this one!! XA = XB = XC XA ≠ XB ≠ XC Null hypothesis: H0: all the groups are equal The ANOVA tests this one!! XA = XB = XC Do further tests to pick between these Alternative hypotheses HA: not all the groups are equal XA ≠ XB ≠ XC XA ≠ XB = XC XA = XB ≠ XC XA = XC ≠ XB 1 factor ANOVA

1 factor ANOVA Planned contrasts and post-hoc tests: - Further tests used to rule out the different Alternative hypotheses XA ≠ XB ≠ XC Test 1: A ≠ B XA = XB ≠ XC Test 2: A ≠ C XA ≠ XB = XC Test 3: B = C XA = XC ≠ XB 1 factor ANOVA

1 factor ANOVA Reporting your results The observed differences Kind of test Computed F-ratio Degrees of freedom for the test The “p-value” of the test Any post-hoc or planned comparison results “The mean score of Group A was 12, Group B was 25, and Group C was 27. A 1-way ANOVA was conducted and the results yielded a significant difference, F(2,25) = 5.67, p < 0.05. Post hoc tests revealed that the differences between groups A and B and A and C were statistically reliable (respectively t(1) = 5.67, p < 0.05 & t(1) = 6.02, p <0.05). Groups B and C did not differ significantly from one another” 1 factor ANOVA

We covered much of this in our experimental design lecture More than one factor Factors may be within or between Overall design may be entirely within, entirely between, or mixed Many F-ratios may be computed An F-ratio is computed to test the main effect of each factor An F-ratio is computed to test each of the potential interactions between the factors Factorial ANOVAs

Factorial ANOVAs Reporting your results The observed differences Because there may be a lot of these, may present them in a table instead of directly in the text Kind of design e.g. “2 x 2 completely between factorial design” Computed F-ratios May see separate paragraphs for each factor, and for interactions Degrees of freedom for the test Each F-ratio will have its own set of df’s The “p-value” of the test May want to just say “all tests were tested with an alpha level of 0.05” Any post-hoc or planned comparison results Typically only the theoretically interesting comparisons are presented Factorial ANOVAs