PHYS 1441 – Section 001 Lecture # 15

Slides:



Advertisements
Similar presentations
Rotational Equilibrium and Rotational Dynamics
Advertisements

Chapter 9 Rotational Dynamics.
Ch 9. Rotational Dynamics In pure translational motion, all points on an object travel on parallel paths. The most general motion is a combination of translation.
Physics Montwood High School R. Casao
Chapter 9 Rotational Dynamics.
Physics 106: Mechanics Lecture 06 Wenda Cao NJIT Physics Department.
Tuesday, Oct. 28, 2014PHYS , Fall 2014 Dr. Jaehoon Yu 1 PHYS 1443 – Section 004 Lecture #18 Tuesday, Oct. 28, 2014 Dr. Jaehoon Yu Torque and Angular.
Angular Momentum of a Particle
Thursday, Oct. 23, 2014PHYS , Fall 2014 Dr. Jaehoon Yu 1 PHYS 1443 – Section 004 Lecture #17 Thursday, Oct. 23, 2014 Dr. Jaehoon Yu Torque & Vector.
Lecture 18 Rotational Motion
PHYS 1441 – Section 002 Lecture #22 Monday, April 22, 2013 Dr. Jaehoon Yu Work, Power and Energy in Rotation Angular Momentum Angular Momentum Conservation.
8.4. Newton’s Second Law for Rotational Motion
Thursday, July 9, 2015PHYS , Summer 2014 Dr. Jaehoon Yu 1 PHYS 1441 – Section 001 Lecture #16 Thursday, July 9, 2015 Dr. Jaehoon Yu Relationship.
Monday, June 25, 2007PHYS , Summer 2007 Dr. Jaehoon Yu 1 PHYS 1443 – Section 001 Lecture #14 Monday, June 25, 2007 Dr. Jaehoon Yu Torque Vector.
Wednesday, Oct. 23, 2002PHYS , Fall 2002 Dr. Jaehoon Yu 1 PHYS 1443 – Section 003 Lecture #12 Monday, Oct. 23, 2002 Dr. Jaehoon Yu 1.Rocket Propulsion.
Monday, Nov. 19, 2007 PHYS , Fall 2007 Dr. Jaehoon Yu 1 PHYS 1443 – Section 002 Lecture #21 Monday, Nov. 19, 2007 Dr. Jae Yu Work, Power and Energy.
Chapter 8 Rotational Motion.
PHYS 1441 – Section 002 Lecture #21 Monday, April 15, 2013 Dr. Jaehoon Yu Moment of Inertia Torque and Angular Acceleration Rotational Kinetic Energy Today’s.
The center of gravity of an object is the point at which its weight can be considered to be located.
Wednesday, Apr. 15, 2009PHYS , Spring 2009 Dr. Jaehoon Yu PHYS 1441 – Section 002 Lecture #19 Wednesday, Apr. 15, 2009 Dr. Jaehoon Yu Relationship.
Spring 2002 Lecture #13 Dr. Jaehoon Yu 1.Rotational Energy 2.Computation of Moments of Inertia 3.Parallel-axis Theorem 4.Torque & Angular Acceleration.
PHYS 1443 – Section 001 Lecture #18 Monday, April 18, 2011 Dr. Jaehoon Yu Torque & Vector product Moment of Inertia Calculation of Moment of Inertia Parallel.
Chapter 9 Rotational Dynamics.
Thursday, Oct. 30, 2014PHYS , Fall 2014 Dr. Jaehoon Yu 1 PHYS 1443 – Section 004 Lecture #19 Thursday, Oct. 30, 2014 Dr. Jaehoon Yu Rolling Kinetic.
Wednesday, Nov. 14, 2007 PHYS , Fall 2007 Dr. Jaehoon Yu 1 PHYS 1443 – Section 002 Lecture #20 Wednesday, Nov. 14, 2007 Dr. Jae Yu Moment of Inertia.
PHYS 1441 – Section 002 Lecture #22
Tuesday, June 26, 2007PHYS , Summer 2006 Dr. Jaehoon Yu 1 PHYS 1443 – Section 001 Lecture #15 Tuesday, June 26, 2007 Dr. Jaehoon Yu Rotational.
Wednesday, Apr. 7, 2004PHYS , Spring 2004 Dr. Jaehoon Yu 1 PHYS 1441 – Section 004 Lecture #18 Wednesday, Apr. 7, 2004 Dr. Jaehoon Yu Torque Moment.
Chapter 11 Angular Momentum. The Vector Product and Torque The torque vector lies in a direction perpendicular to the plane formed by the position vector.
Wednesday, Nov. 10, 2004PHYS , Fall 2004 Dr. Jaehoon Yu 1 1.Moment of Inertia 2.Parallel Axis Theorem 3.Torque and Angular Acceleration 4.Rotational.
Monday, Apr. 27, 2009PHYS , Spring 2009 Dr. Jaehoon Yu PHYS 1441 – Section 002 Lecture #20 Monday, Apr. 27, 2009 Dr. Jaehoon Yu Torque and Angular.
Wednesday, July 6, 2011PHYS , Summer 2011 Dr. Jaehoon Yu 1 PHYS 1443 – Section 001 Lecture #16 Wednesday, July 6, 2011 Dr. Jaehoon Yu Calculation.
Monday, Nov. 4, 2002PHYS , Fall 2002 Dr. Jaehoon Yu 1 PHYS 1443 – Section 003 Lecture #14 Monday, Nov. 4, 2002 Dr. Jaehoon Yu 1.Parallel Axis Theorem.
Wednesday, Oct. 29, 2003PHYS , Fall 2003 Dr. Jaehoon Yu 1 PHYS 1443 – Section 003 Lecture #17 Wednesday, Oct. 29, 2002 Dr. Jaehoon Yu 1.Rolling.
Rotational Dynamics The Action of Forces and Torques on Rigid Objects
Monday, Nov. 12, 2007 PHYS , Fall 2007 Dr. Jaehoon Yu 1 PHYS 1443 – Section 002 Lecture #19 Monday, Nov. 12, 2007 Dr. Jae Yu Rolling Motion of.
PHYS 1443 – Section 001 Lecture #20
PHYS 1443 – Section 001 Lecture #19
PHYS 1443 – Section 002 Lecture #19
PHYS 1443 – Section 003 Lecture #18
PHYS 1443 – Section 001 Lecture #15
PHYS 1443 – Section 003 Lecture #16
Unit 7 - Rotational Mechanics
PHYS 1441 – Section 002 Lecture #20
PHYS 1441 – Section 002 Lecture #21
PHYS 1443 – Section 003 Lecture #12
PHYS 1443 – Section 001 Lecture #14
PHYS 1441 – Section 002 Lecture #22
PHYS 1441 – Section 501 Lecture #13
Rotational Dynamics Chapter 9.
PHYS 1443 – Section 003 Lecture #15
PHYS 1443 – Section 002 Lecture #18
Rotational Kinematics
PHYS 1443 – Section 003 Lecture #16
PHYS 1441 – Section 002 Lecture #19
PHYS 1441 – Section 001 Lecture # 15
PHYS 1441 – Section 001 Lecture # 14
PHYS 1441 – Section 002 Lecture #16
PHYS 1441 – Section 001 Lecture # 14
Spring 2002 Lecture #15 Dr. Jaehoon Yu Mid-term Results
PHYS 1441 – Section 001 Lecture # 9
PHYS 1441 – Section 002 Lecture #21
PHYS 1441 – Section 002 Lecture #21
PHYS 1443 – Section 001 Lecture #13
PHYS 1443 – Section 003 Lecture #14
Rigid Body: Rotational and Translational Motion; Rolling without Slipping 8.01 W11D1 Today’s Reading Assignment Young and Freedman: 10.3.
PHYS 1443 – Section 001 Lecture #8
Rigid Body: Rotational and Translational Motion; Rolling without Slipping 8.01 W11D1 Today’s Reading Assignment Young and Freedman:
PHYS 1441 – Section 001 Lecture #7
PHYS 1443 – Section 003 Lecture #15
Presentation transcript:

PHYS 1441 – Section 001 Lecture # 15 Wednesday, June 25, 2008 Dr. Jaehoon Yu Moment of Inertia Work, Power and Energy in Rotation Rotational Kinetic Energy Wednesday, June 25, 2008 PHYS 1441-001, Summer 2008 Dr. Jaehoon Yu

Announcements Quiz Tomorrow, June 26 Final exam Beginning of the class Covers CH8 – 9 Final exam 8 – 10am, Monday, June 30, in SH103 Comprehensive exam: Covers CH 1 – 9 + Appendices A – E There will be a review session by Dr. Satyanand in class tomorrow, after the quiz Please take full advantage of this review Wednesday, June 25, 2008 PHYS 1441-001, Summer 2008 Dr. Jaehoon Yu

Moment of Inertia Measure of resistance of an object to changes in its rotational motion. Equivalent to mass in linear motion. Rotational Inertia: For a group of objects For a rigid body What are the dimension and unit of Moment of Inertia? Determining Moment of Inertia is extremely important for computing equilibrium of a rigid body, such as a building. Dependent on the axis of rotation!!! Wednesday, June 25, 2008 PHYS 1441-001, Summer 2008 Dr. Jaehoon Yu

Example for Moment of Inertia In a system of four small spheres as shown in the figure, assuming the radii are negligible and the rods connecting the particles are massless, compute the moment of inertia and the rotational kinetic energy when the system rotates about the y-axis at angular speed w. x y Since the rotation is about y axis, the moment of inertia about y axis, Iy, is M l m b O This is because the rotation is done about y axis, and the radii of the spheres are negligible. Why are some 0s? Thus, the rotational kinetic energy is Find the moment of inertia and rotational kinetic energy when the system rotates on the x-y plane about the z-axis that goes through the origin O. Wednesday, June 25, 2008 PHYS 1441-001, Summer 2008 Dr. Jaehoon Yu

Check out Table 9.1 for moment of inertia for various shaped objects Wednesday, June 25, 2008 PHYS 1441-001, Summer 2008 Dr. Jaehoon Yu

Torque & Angular Acceleration Let’s consider a point object with mass m rotating on a circle. Ft m r What forces do you see in this motion? Fr The tangential force Ft and the radial force Fr The tangential force Ft is The torque due to tangential force Ft is What do you see from the above relationship? What does this mean? Torque acting on a particle is proportional to the angular acceleration. What law do you see from this relationship? Analogs to Newton’s 2nd law of motion in rotation. How about a rigid object? The external tangential force dFt is r dFt dm O The torque due to tangential force Ft is The total torque is What is the contribution due to radial force and why? Contribution from radial force is 0, because its line of action passes through the pivoting point, making the moment arm 0. Wednesday, June 25, 2008 PHYS 1441-001, Summer 2008 Dr. Jaehoon Yu

Ex. 12 Hosting a Crate The combined moment of inertia of the dual pulley is 50.0 kg·m2. The crate weighs 4420 N. A tension of 2150 N is maintained in the cable attached to the motor. Find the angular acceleration of the dual pulley. since Solve for a Wednesday, June 25, 2008 PHYS 1441-001, Summer 2008 Dr. Jaehoon Yu

Work, Power, and Energy in Rotation Let’s consider the motion of a rigid body with a single external force F exerting tangentially, moving the object by s. The rotational work done by the force F as the object rotates through the distance s=rq is Since the magnitude of torque is rF, What is the unit of the rotational work? J (Joules) The rate of work, or power, of the constant torque t becomes How was the power defined in linear motion? What is the unit of the rotational power? J/s or W (watts) Wednesday, June 25, 2008 PHYS 1441-001, Summer 2008 Dr. Jaehoon Yu

Rotational Kinetic Energy ri mi q O x y vi What do you think the kinetic energy of a rigid object that is undergoing a circular motion is? Kinetic energy of a masslet, mi, moving at a tangential speed, vi, is Since a rigid body is a collection of masslets, the total kinetic energy of the rigid object is Since moment of Inertia, I, is defined as Unit? J The above expression is simplified as Wednesday, June 25, 2008 PHYS 1441-001, Summer 2008 Dr. Jaehoon Yu

Ex. 13 Rolling Cylinders A thin-walled hollow cylinder (mass = mh, radius = rh) and a solid cylinder (mass = ms, radius = rs) start from rest at the top of an incline. Determine which cylinder has the greatest translational speed upon reaching the bottom. Total Mechanical Energy = KE+ KER+ PE From Energy Conservation since What does this tell you? The cylinder with the smaller moment of inertia will have a greater final translational speed. Solve for vf The final speeds of the cylinders are Wednesday, June 25, 2008 PHYS 1441-001, Summer 2008 Dr. Jaehoon Yu

Angular Momentum of a Particle If you grab onto a pole while running, your body will rotate about the pole, gaining angular momentum. We’ve used the linear momentum to solve physical problems with linear motions, the angular momentum will do the same for rotational motions. Let’s consider a point-like object ( particle) with mass m located at the vector location r and moving with linear velocity v The angular momentum L of this particle relative to the origin O is What is the unit and dimension of angular momentum? Note that L depends on origin O. Why? Because r changes What else do you learn? The direction of L is +z Since p is mv, the magnitude of L becomes What do you learn from this? If the direction of linear velocity points to the origin of rotation, the particle does not have any angular momentum. If the linear velocity is perpendicular to position vector, the particle moves exactly the same way as a point on a rim. Wednesday, June 25, 2008 PHYS 1441-001, Summer 2008 Dr. Jaehoon Yu

Conservation of Angular Momentum Remember under what condition the linear momentum is conserved? Linear momentum is conserved when the net external force is 0. By the same token, the angular momentum of a system is constant in both magnitude and direction, if the resultant external torque acting on the system is 0. What does this mean? Angular momentum of the system before and after a certain change is the same. Three important conservation laws for isolated system that does not get affected by external forces Mechanical Energy Linear Momentum Angular Momentum Wednesday, June 25, 2008 PHYS 1441-001, Summer 2008 Dr. Jaehoon Yu

Example for Angular Momentum Conservation A star rotates with a period of 30 days about an axis through its center. After the star undergoes a supernova explosion, the stellar core, which had a radius of 1.0x104km, collapses into a neutron star of radius 3.0km. Determine the period of rotation of the neutron star. The period will be significantly shorter, because its radius got smaller. What is your guess about the answer? There is no external torque acting on it The shape remains spherical Its mass remains constant Let’s make some assumptions: Using angular momentum conservation The angular speed of the star with the period T is Thus Wednesday, June 25, 2008 PHYS 1441-001, Summer 2008 Dr. Jaehoon Yu

Ex. 14 A Spinning Skater An ice skater is spinning with both arms and a leg outstretched. She pulls her arms and leg inward and her spinning motion changes dramatically. Use the principle of conservation of angular momentum to explain how and why her spinning motion changes. The system of the ice skater does not have any net external torque applied to her. Therefore the angular momentum is conserved for her system. By pulling her arm inward, she reduces the moment of inertia (Smr2) and thus in order to keep the angular momentum the same, her angular speed has to increase. Wednesday, June 25, 2008 PHYS 1441-001, Summer 2008 Dr. Jaehoon Yu

Ex. 15 A Satellite in an Elliptical Orbit A satellite is placed in an elliptical orbit about the earth. Its point of closest approach is 8.37x106m from the center of the earth, and its point of greatest distance is 25.1x106m from the center of the earth. The speed of the satellite at the perigee is 8450 m/s. Find the speed at the apogee. Angular momentum is From angular momentum conservation since and Solve for vA Wednesday, June 25, 2008 PHYS 1441-001, Summer 2008 Dr. Jaehoon Yu

Similarity Between Linear and Rotational Motions All physical quantities in linear and rotational motions show striking similarity. Quantities Linear Rotational Mass Moment of Inertia Length of motion Distance Angle (Radian) Speed Acceleration Force Torque Work Power Momentum Kinetic Energy Kinetic Wednesday, June 25, 2008 PHYS 1441-001, Summer 2008 Dr. Jaehoon Yu

A thought problem Moment of Inertia Consider two cylinders – one hollow (mass mh and radius rh) and the other solid (mass ms and radius rs) – on top of an inclined surface of height h0 as shown in the figure. Show mathematically how their final speeds at the bottom of the hill compare in the following cases: Totally frictionless surface With some friction but no energy loss due to the friction With energy loss due to kinetic friction Moment of Inertia Hollow cylinder: Solid Cylinder: Wednesday, June 25, 2008 PHYS 1441-001, Summer 2008 Dr. Jaehoon Yu