Today’s agenda High-level memory management (additional materials + Ch10, Module VIII) page replacement algorithms CS354-Fall2018.

Slides:



Advertisements
Similar presentations
Virtual Memory (Chapter 4.3)
Advertisements

Module 10: Virtual Memory
Chapter 10: Virtual Memory
Background Virtual memory – separation of user logical memory from physical memory. Only part of the program needs to be in memory for execution. Logical.
Chapter 9: Virtual Memory
Silberschatz, Galvin and Gagne  2002 Modified for CSCI 399, Royden, Operating System Concepts Operating Systems Lecture 36 Virtual Memory Read.
Chapter 9: Virtual Memory
Virtual Memory Management G. Anuradha Ref:- Galvin.
1 Virtual Memory Management B.Ramamurthy. 2 Demand Paging Main memory LAS 0 LAS 1 LAS 2 (Physical Address Space -PAS) LAS - Logical Address.
9.1 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition Virtual Memory OSC: Chapter 9. Demand Paging Copy-on-Write Page Replacement.
Silberschatz, Galvin and Gagne  Operating System Concepts Chapter 10: Virtual Memory Background Demand Paging Process Creation Page Replacement.
Module 9: Virtual Memory
Module 10: Virtual Memory Background Demand Paging Performance of Demand Paging Page Replacement Page-Replacement Algorithms Allocation of Frames Thrashing.
Virtual Memory Background Demand Paging Performance of Demand Paging
Virtual Memory Introduction to Operating Systems: Module 9.
Instructor: Umar KalimNUST Institute of Information Technology Operating Systems Virtual Memory.
03/26/2010CSCI 315 Operating Systems Design1 Virtual Memory Notice: The slides for this lecture have been largely based on those accompanying an earlier.
Silberschatz, Galvin and Gagne  Operating System Concepts Chapter 10: Virtual Memory Background Demand Paging Process Creation Page Replacement.
Chapter 9: Virtual Memory. 9.2 Silberschatz, Galvin and Gagne ©2005 Operating System Concepts – 7 th Edition, Feb 22, 2005 Chapter 9: Virtual Memory Background.
Chapter 10: Virtual Memory. 9.2 Silberschatz, Galvin and Gagne ©2005 Operating System Concepts – 7 th Edition, Feb 22, 2005 Chapter 10: Virtual Memory.
Instructor: Umar KalimNUST Institute of Information Technology Operating Systems Revisiting Virtual Memory.
Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition, Chapter 9: Virtual Memory.
CSS430 Virtual Memory Textbook Ch9
Silberschatz, Galvin and Gagne ©2011 Operating System Concepts Essentials – 8 th Edition Chapter 9: Virtual Memory.
Part 8: Virtual Memory. Silberschatz, Galvin and Gagne ©2005 Virtual vs. Physical Address Space Each process has its own virtual address space, which.
Chapter 9: Virtual Memory Background Demand Paging Copy-on-Write Page Replacement Allocation of Frames Thrashing Memory-Mapped Files Allocating Kernel.
CS212: OPERATING SYSTEM Lecture 6: Virtual-Memory Management 1 Computer Science Department.
Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition Virtual Memory.
Silberschatz, Galvin and Gagne  Operating System Concepts Chapter 10: Virtual Memory Background Demand Paging Process Creation Page Replacement.
Chapter 10: Virtual Memory Background Demand Paging Process Creation Page Replacement Allocation of Frames Thrashing Operating System Examples Operating.
Silberschatz, Galvin and Gagne  Operating System Concepts Chapter 10: Virtual Memory Background Demand Paging Page Replacement Allocation of.
Virtual Memory. Background Virtual memory is a technique that allows execution of processes that may not be completely in the physical memory. Virtual.
Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9 th Edition Chapter 9: Virtual Memory.
Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 9 th Edition Chapter 9: Virtual-Memory Management.
Operating Systems (CS 340 D) Princess Nora University Faculty of Computer & Information Systems Computer science Department.
CSC 360, Instructor: Kui Wu Memory Management II: Virtual Memory.
CS307 Operating Systems Virtual Memory Fan Wu Department of Computer Science and Engineering Shanghai Jiao Tong University Spring 2012.
Silberschatz, Galvin and Gagne  Operating System Concepts Virtual Memory Virtual memory – separation of user logical memory from physical memory.
1 Virtual Memory. Cache memory: provides illusion of very high speed Virtual memory: provides illusion of very large size Main memory: reasonable cost,
Lecture 19 Virtual Memory Demand Paging. Background Virtual memory – separation of user logical memory from physical memory. –Only part of the program.
Chapter 9: Virtual-Memory Management. 9.2 Silberschatz, Galvin and Gagne ©2005 Operating System Principles Chapter 9: Virtual-Memory Management 9.1 Background.
1 Chapter 10: Virtual Memory Background Demand Paging Process Creation Page Replacement Allocation of Frames Thrashing Operating System Examples (not covered.
10.1 Chapter 10: Virtual Memory Background Demand Paging Process Creation Page Replacement Allocation of Frames Thrashing Operating System Examples.
Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition, Chapter 9: Virtual-Memory Management.
Chapter 9: Virtual Memory. 9.2 Silberschatz, Galvin and Gagne ©2005 Operating System Concepts Background Virtual memory – separation of user logical memory.
SLC/VER1.0/OS CONCEPTS/OCT'99
Virtual Memory CSSE 332 Operating Systems
Chapter 9: Virtual Memory – Part I
Chapter 9: Virtual Memory
Chapter 9: Virtual Memory
Operating Systems Virtual Memory Alok Kumar Jagadev.
Module 9: Virtual Memory
Chapter 9: Virtual Memory
Chapter 9: Virtual-Memory Management
Operating Systems Lecture November 2018.
Lecture 40 Syed Mansoor Sarwar
5: Virtual Memory Background Demand Paging
Chapter 9: Virtual Memory
Chapter 9: Virtual Memory
Chapter 6 Virtual Memory
Lecture 37 Syed Mansoor Sarwar
Operating Systems CMPSC 473
CSS430 Virtual Memory Textbook Ch10
Module 9: Virtual Memory
Chapter 9: Virtual Memory CSS503 Systems Programming
Virtual Memory.
Chapter 8 & 9 Main Memory and Virtual Memory
Clock Algorithm Example
Module IV Memory Organization.
Presentation transcript:

Today’s agenda High-level memory management (additional materials + Ch10, Module VIII) page replacement algorithms CS354-Fall2018

Recap: Demanding paging Bring a page into memory only when it is needed Page fault: If there is a reference to a page, first reference to that page will trap to operating system: page fault (interrupt raised by MMU) Operating system to decide: Invalid reference  abort Just not in memory Get empty frame Case I: if there is a free frame Case II: if there is no frame frames (page replacement) Swap page into frame Reset tables Set validation bit = v 5.Restart the instruction that caused the page fault CS354-Fall2018

Recap: Page replacement select a victim frame when there is no free frames Goal: want lowest page-fault rate Algorithms: FIFS Belady’s Anomaly: more frames  more page faults (in-class example: 3 frames vs 4 frames) CS354-Fall2018