Chapter 22 Gauss’s Law The Study guide is posted online under the homework section , Your exam is on March 6 Chapter 22 opener. Gauss’s law is an elegant.

Slides:



Advertisements
Similar presentations
QUICK QUIZ 24.1 (For the end of section 24.1)
Advertisements

Announcements Monday guest lecturer: Dr. Fred Salsbury. Solutions now available online. Will strive to post lecture notes before class. May be different.
Physics 24-Winter 2003-L031 Gausss Law Basic Concepts Electric Flux Gausss Law Applications of Gausss Law Conductors in Equilibrium.
The electric flux may not be uniform throughout a particular region of space. We can determine the total electric flux by examining a portion of the electric.
Applications of Gauss’s Law
Study Guide Chapter 19 Sections 9 & 10
Copyright © 2009 Pearson Education, Inc. Chapter 21 Electric Charge and Electric Field.
Charge and Electric Flux. Electric Flux A closed surface around an enclosed charge has an electric flux that is outward on inward through the surface.
Chapter 24 Gauss’s Law.
Chapter 23 Gauss’ Law.
Chapter 24 Gauss’s Law.
Chapter 22 Gauss’s Law Electric charge and flux (sec & .3)
Chapter 24 Gauss’s Law.
Chapter 23 Gauss’s Law.
Nadiah Alanazi Gauss’s Law 24.3 Application of Gauss’s Law to Various Charge Distributions.
Charles Allison © 2000 Chapter 22 Gauss’s Law HW# 5 : Chap.22: Pb.1, Pb.6, Pb.24, Pb.27, Pb.35, Pb.46 Due Friday: Friday, Feb 27.
a b c Gauss’ Law … made easy To solve the above equation for E, you have to be able to CHOOSE A CLOSED SURFACE such that the integral is TRIVIAL. (1)
Chapter 24 Gauss’s Law.
Gauss’s Law The electric flux through a closed surface is proportional to the charge enclosed The electric flux through a closed surface is proportional.
Definitions Flux—The rate of flow through an area or volume. It can also be viewed as the product of an area and the vector field across the area Electric.
Electric Charge and Electric Field
Electric Flux and Gauss Law
Copyright © 2009 Pearson Education, Inc. Lecture 4 – Electricity & Magnetism (Electrostatics) a. Electric Charge, Electric Field & Gauss’ Law.
Chapter 22 Gauss’s Law Chapter 22 opener. Gauss’s law is an elegant relation between electric charge and electric field. It is more general than Coulomb’s.
Ch. 22 in the book by Giancoli
Dr. Jie ZouPHY Chapter 24 Gauss’s Law (cont.)
Chapter 24 Gauss’s Law. Let’s return to the field lines and consider the flux through a surface. The number of lines per unit area is proportional to.
Copyright © 2009 Pearson Education, Inc. Chapter 21 Electric Charge and Electric Field.
CHAPTER 24 : GAUSS’S LAW 24.1) ELECTRIC FLUX
Copyright © 2009 Pearson Education, Inc. Chapter 22 Gauss’s Law.
ELECTRICITY PHY1013S GAUSS’S LAW Gregor Leigh
Tue. Feb. 3 – Physics Lecture #26 Gauss’s Law II: Gauss’s Law, Symmetry, and Conductors 1. Electric Field Vectors and Electric Field Lines 2. Electric.
د/ بديع عبدالحليم د/ بديع عبدالحليم
Charles Allison © 2000 Chapter 22 Gauss’s Law.. Charles Allison © 2000 Problem 57.
Copyright © 2009 Pearson Education, Inc. Applications of Gauss’s Law.
Copyright © 2012 Pearson Education Inc. PowerPoint ® Lectures for University Physics, Thirteenth Edition – Hugh D. Young and Roger A. Freedman Lectures.
Chapter 22 Gauss’s Law HW 3: Chapter 22: Pb.1, Pb.6, Pb.24,
Gauss’ Law.
24.2 Gauss’s Law.
Chapter 22 Gauss’s Law Electric charge and flux (sec & .3)
Gauss’s Law Basic Concepts Electric Flux Gauss’s Law
Physics 212 Lecture 4 Gauss’ Law.
Gauss’s Law Chapter 24.
Problem-Solving Guide for Gauss’s Law
Gauss’s Law Gauss’s law uses symmetry to simplify electric field calculations. Gauss’s law also gives us insight into how electric charge distributes itself.
Gauss’s Law ENROLL NO Basic Concepts Electric Flux
Electric Flux & Gauss Law
PHYS 1444 – Section 003 Lecture #5
Gauss’s Law Electric Flux Gauss’s Law Examples.
Reading: Chapter 28 For r > a Gauss’s Law.
Chapter 23 Electric Potential
TOPIC 3 Gauss’s Law.
E. not enough information given to decide Gaussian surface #1
C. less, but not zero. D. zero.
Chapter 22 Gauss’s Law HW 4: Chapter 22: Pb.1, Pb.6, Pb.24,
Chapter 23 Gauss’s Law.
PHYS 1444 – Section 003 Lecture #4
Question for the day Can the magnitude of the electric charge be calculated from the strength of the electric field it creates?
Gauss’s Law (II) Examples: charged spherical shell, infinite plane,
Chapter 24 - Summary Gauss’s Law.
Phys102 Lecture 3 Gauss’s Law
Chapter 23 Gauss’s Law.
Physics for Scientists and Engineers, with Modern Physics, 4th edition
PHYS 1444 – Section 501 Lecture #4
Chapter 22 Gauss’s Law Chapter 22 opener. Gauss’s law is an elegant relation between electric charge and electric field. It is more general than Coulomb’s.
Chapter 22 Gauss’s Law Chapter 22 opener. Gauss’s law is an elegant relation between electric charge and electric field. It is more general than Coulomb’s.
Gauss’s Law.
Chapter 22 Gauss’s Law The Study guide is posted online under the homework section , Your exam is on March 6 Chapter 22 opener. Gauss’s law is an elegant.
Example 24-2: flux through a cube of a uniform electric field
Chapter 23 Gauss’s Law.
Presentation transcript:

Chapter 22 Gauss’s Law The Study guide is posted online under the homework section , Your exam is on March 6 Chapter 22 opener. Gauss’s law is an elegant relation between electric charge and electric field. It is more general than Coulomb’s law. Gauss’s law involves an integral of the electric field E at each point on a closed surface. The surface is only imaginary, and we choose the shape and placement of the surface so that we can figure out the integral. In this drawing, two different surfaces are shown, both enclosing a point charge Q. Gauss’s law states that the product E·dA, where dA is an infinitesimal area of the surface, integrated over the entire surface, equals the charge enclosed by the surface Qencl divided by ε0. Both surfaces here enclose the same charge Q. Hence ∫E·dA will give the same result for both surfaces.

22-2 Gauss’s Law The net number of field lines through the surface is proportional to the charge enclosed, and also to the flux, giving Gauss’s law: This can be used to find the electric field in situations with a high degree of symmetry.

22-2 Gauss’s Law-Problem 7 Problem 7.(II): In Fig. 22–27, two objects O1 and O2, have charges 1.0 μC and -2.0 μC respectively, and a third object, O3 is electrically neutral. (a) What is the electric flux through the surface A1 that encloses all the three objects? (b) What is the electric flux through the surface A2 that encloses the third object only?

22-2 Gauss’s Law For a point charge, Therefore, Figure 22-7. A single point charge Q at the center of an imaginary sphere of radius r (our “gaussian surface”—that is, the closed surface we choose to use for applying Gauss’s law in this case). Solving for E gives the result we expect from Coulomb’s law:

22-2 Gauss’s Law Using Coulomb’s law to evaluate the integral of the field of a point charge over the surface of a sphere surrounding the charge gives: Figure 22-8. A single point charge surrounded by a spherical surface, A1, and an irregular surface,A2. Looking at the arbitrarily shaped surface A2, we see that the same flux passes through it as passes through A1. Therefore, this result should be valid for any closed surface.

22-2 Gauss’s Law Finally, if a Gaussian surface encloses several point charges, the superposition principle shows that: Therefore, Gauss’s law is valid for any charge distribution. Note, however, that it only refers to the field due to charges within the gaussian surface – charges outside the surface will also create fields.

22-2 Gauss’s Law Conceptual Example 22-2: Flux from Gauss’s law. Consider the two Gaussian surfaces, A1 and A2, as shown. The only charge present is the charge Q at the center of surface A1. What is the net flux through each surface, A1 and A2? Solution: The net flux through A1 is Q/ε0, as it encloses charge Q. The net flux through surface A2 is zero, even though the field is not zero on the surface.

22-3 Applications of Gauss’s Law Example 22-3: Spherical conductor. A thin spherical shell of radius r0 possesses a total net charge Q that is uniformly distributed on it. Determine the electric field at points (a) outside the shell, and (b) within the shell. (c) What if the conductor were a solid sphere? Figure 22-11. Cross-sectional drawing of a thin spherical shell of radius r0 carrying a net charge Q uniformly distributed. A1 and A2 represent two gaussian surfaces we use to determine Example 22–3. Solution: a. The gaussian surface A1, outside the shell, encloses the charge Q. We know the field must be radial, so E = Q/(4πε0r2). b. The gaussian surface A2, inside the shell, encloses no charge; therefore the field must be zero. c. All the excess charge on a conductor resides on its surface, so these answers hold for a solid sphere as well.

22-3 Applications of Gauss’s Law Example 22-4: Solid sphere of charge. An electric charge Q is distributed uniformly throughout a nonconducting sphere of radius r0. Determine the electric field (a) outside the sphere (r > r0) and (b) inside the sphere (r < r0). Solution: a. Outside the sphere, a gaussian surface encloses the total charge Q. Therefore, E = Q/(4πε0r2). b. Within the sphere, a spherical gaussian surface encloses a fraction of the charge Qr3/r03 (the ratio of the volumes, as the charge density is constant). Integrating and solving for the field gives E = Qr/(4πε0r03).

22-3 Applications of Gauss’s Law Example 22-5: Nonuniformly charged solid sphere. Suppose the charge density of a solid sphere is given by ρE = αr2, where α is a constant. (a) Find α in terms of the total charge Q on the sphere and its radius r0. (b) Find the electric field as a function of r inside the sphere. Solution: a. Consider the sphere to be made of a series of spherical shells, each of radius r and thickness dr. The volume of each is dV = 4πr2 dr. To find the total charge: Q = ∫ρE dV = 4παr05/5, giving α = 5Q/4πr05. b. The charge enclosed in a sphere of radius r will be Qr5/r05. Gauss’s law then gives E = Qr3/4πε0r05.