Protein Fibrillation Lag Times During Kinetic Inhibition

Slides:



Advertisements
Similar presentations
How Do Thermophilic Proteins and Proteomes Withstand High Temperature? Lucas Sawle, Kingshuk Ghosh Biophysical Journal Volume 101, Issue 1, Pages
Advertisements

Binding Thermodynamics of Ferredoxin:NADP+ Reductase: Two Different Protein Substrates and One Energetics  Marta Martínez-Júlvez, Milagros Medina, Adrián.
Pressure and Temperature Dependence of Growth and Morphology of Escherichia coli: Experiments and Stochastic Model  Pradeep Kumar, Albert Libchaber  Biophysical.
Michiko Tashiro, Hana Inoue, Masato Konishi  Biophysical Journal 
Kinetic Hysteresis in Collagen Folding
Volume 99, Issue 10, Pages (November 2010)
Volume 105, Issue 9, Pages (November 2013)
María del Rocío Cantero, Horacio F. Cantiello  Biophysical Journal 
Volume 103, Issue 9, Pages (November 2012)
Santosh K. Dasika, Kalyan C. Vinnakota, Daniel A. Beard 
Etienne Roux, Marko Marhl  Biophysical Journal 
Volume 113, Issue 12, Pages (December 2017)
Volume 106, Issue 12, Pages (June 2014)
Joseph M. Johnson, William J. Betz  Biophysical Journal 
Volume 96, Issue 6, Pages (March 2009)
Intact Telopeptides Enhance Interactions between Collagens
Volume 98, Issue 1, Pages (January 2010)
An Equilibrium Model for the Combined Effect of Macromolecular Crowding and Surface Adsorption on the Formation of Linear Protein Fibrils  Travis Hoppe,
Christopher B. Stanley, Tatiana Perevozchikova, Valerie Berthelier 
Volume 86, Issue 4, Pages (April 2004)
Static Light Scattering From Concentrated Protein Solutions II: Experimental Test of Theory for Protein Mixtures and Weakly Self-Associating Proteins 
Physiological Pathway of Magnesium Influx in Rat Ventricular Myocytes
Volume 101, Issue 7, Pages (October 2011)
Volume 99, Issue 10, Pages (November 2010)
Volume 109, Issue 8, Pages (October 2015)
Factor Xa Binding to Phosphatidylserine-Containing Membranes Produces an Inactive Membrane-Bound Dimer  Tilen Koklic, Rinku Majumder, Gabriel E. Weinreb,
Gerald Offer, K.W. Ranatunga  Biophysical Journal 
H.M. Seeger, G. Marino, A. Alessandrini, P. Facci  Biophysical Journal 
Volume 100, Issue 5, Pages (March 2011)
Volume 100, Issue 3, Pages (February 2011)
Volume 104, Issue 8, Pages (April 2013)
Volume 111, Issue 7, Pages (October 2016)
Yusuke Nakasone, Kazunori Zikihara, Satoru Tokutomi, Masahide Terazima 
Paolo Mereghetti, Razif R. Gabdoulline, Rebecca C. Wade 
Volume 93, Issue 12, Pages (December 2007)
Kinetic Hysteresis in Collagen Folding
Volume 99, Issue 8, Pages (October 2010)
Volume 108, Issue 6, Pages (March 2015)
Volume 109, Issue 3, Pages (August 2015)
Saswata Sankar Sarkar, Jayant B. Udgaonkar, Guruswamy Krishnamoorthy 
Enhanced Tethered-Particle Motion Analysis Reveals Viscous Effects
Volume 83, Issue 2, Pages (August 2002)
Thermodynamic Characterization of the Unfolding of the Prion Protein
Richa Dave, Daniel S. Terry, James B. Munro, Scott C. Blanchard 
Kinetics of Surface-Driven Self-Assembly and Fatigue-Induced Disassembly of a Virus- Based Nanocoating  Alejandro Valbuena, Mauricio G. Mateu  Biophysical.
Saswata Sankar Sarkar, Jayant B. Udgaonkar, Guruswamy Krishnamoorthy 
M. Boström, D.R.M. Williams, B.W. Ninham  Biophysical Journal 
Volume 108, Issue 4, Pages (February 2015)
Satomi Matsuoka, Tatsuo Shibata, Masahiro Ueda  Biophysical Journal 
Volume 83, Issue 6, Pages (December 2002)
Volume 93, Issue 10, Pages (November 2007)
Volume 105, Issue 9, Pages (November 2013)
Volume 108, Issue 9, Pages (May 2015)
Interaction of Oxazole Yellow Dyes with DNA Studied with Hybrid Optical Tweezers and Fluorescence Microscopy  C.U. Murade, V. Subramaniam, C. Otto, Martin.
Volume 113, Issue 12, Pages (December 2017)
Volume 107, Issue 3, Pages (August 2014)
Volume 84, Issue 4, Pages (April 2003)
Yongli Zhang, Junyi Jiao, Aleksander A. Rebane  Biophysical Journal 
Main Phase Transitions in Supported Lipid Single-Bilayer
Volume 114, Issue 4, Pages (February 2018)
Volume 111, Issue 4, Pages (August 2016)
Volume 106, Issue 9, Pages (May 2014)
Volume 109, Issue 8, Pages (October 2015)
Kinetic Folding Mechanism of Erythropoietin
Paolo Mereghetti, Razif R. Gabdoulline, Rebecca C. Wade 
Volume 108, Issue 8, Pages (April 2015)
Volume 83, Issue 2, Pages (August 2002)
Volume 108, Issue 9, Pages (May 2015)
George D. Dickinson, Ian Parker  Biophysical Journal 
Volume 98, Issue 3, Pages (February 2010)
Presentation transcript:

Protein Fibrillation Lag Times During Kinetic Inhibition Rodrigo S. Pagano, Máximo López Medus, Gabriela E. Gómez, Paula M. Couto, María S. Labanda, Lucas Landolfo, Cecilia D’Alessio, Julio J. Caramelo  Biophysical Journal  Volume 107, Issue 3, Pages 711-720 (August 2014) DOI: 10.1016/j.bpj.2014.06.029 Copyright © 2014 Biophysical Society Terms and Conditions

Figure 1 Fibril formation by lysozyme. (A and B) AFM image of fibrils formed with 1.5 mg/ml lysozyme (A) without or (B) with the addition of 1.5 mM tri-GlcNAc. (C) Normalized ThioT fluorescence of 79 fibrillation curves with lysozyme concentrations ranging from 5 to 0.025 mg/ml. Individual conditions were measured in quadruplicate, quintuplicate, or sextuplicate. (D) Curve parameters were calculated by fitting a sigmoid function to the experimental curves. In this case, c0 = 0.15 mg/ml. Biophysical Journal 2014 107, 711-720DOI: (10.1016/j.bpj.2014.06.029) Copyright © 2014 Biophysical Society Terms and Conditions

Figure 2 Global fitting of fibrillation curves. (A) Dependence of t1/2 on the initial concentration of lysozyme (c0). (B) Rescaled curve where t was replaced by t/t1/2. Only one example of each concentration is shown. (C) Comparison of the calculated fibrillation curves using the analytical solution of a model that considers secondary nucleation (solid lines) and the experimental data (dotted lines). The curves shown span a range of lysozyme concentrations from 0.15 to 1.5 mg/ml. (D) Experimental tlag (black circles) for all experimental curves and calculated tlag (white squares) of simulated curves for lysozyme concentrations of 1.5–0.15 mg/ml. Biophysical Journal 2014 107, 711-720DOI: (10.1016/j.bpj.2014.06.029) Copyright © 2014 Biophysical Society Terms and Conditions

Figure 3 Effect of inhibitors on lysozyme fibrillation. (A) Lysozyme fluorescence intensity at 319 nm for increasing concentrations of di-GlcNAc (squares) and tri-GlcNAc (triangles). The lines represent the fitting to a model that considers binding and unfolding equilibria. (B) Fibril formation by 0.5 mg/ml lysozyme followed by ThioT fluorescence with the indicated concentrations of tri-GlcNAc. (C) Fibril formation by 0.3 mg/ml lysozyme followed by ThioT fluorescence with the indicated concentrations of di-GlcNAc or tri-GlcNAc. Biophysical Journal 2014 107, 711-720DOI: (10.1016/j.bpj.2014.06.029) Copyright © 2014 Biophysical Society Terms and Conditions

Figure 4 Analysis of fibrillation using τlag. (A) Variational calculus of τlag. A split continuous function composed of a linear function (black line) followed by a quadratic function (gray line) was fitted to the initial part of a 0.15 mg/ml lysozyme fibrillation curve. The right axis shows the quadratic error for all τ values tested. τlag is the τ where the error is minimal (arrow). (B) Calculated τlag for all experimental curves in the absence of inhibitors. Biophysical Journal 2014 107, 711-720DOI: (10.1016/j.bpj.2014.06.029) Copyright © 2014 Biophysical Society Terms and Conditions

Figure 5 Comparison of experimental and calculated values of τlag. (A and B) Observed τlag and the calculated τlag using either the total protein concentration (white circles) or the concentration of unbound species (black circles) for fibrillation curves measured in the presence of (A) di-GlcNAc and (B) tri-GlcNAc. Continuous lines represent a linear regression for each cluster of data. The dashed line is the identity function. Biophysical Journal 2014 107, 711-720DOI: (10.1016/j.bpj.2014.06.029) Copyright © 2014 Biophysical Society Terms and Conditions