Lecture 6 CSE 331 Sep 12, 2016.

Slides:



Advertisements
Similar presentations
Piyush Kumar (Lecture 3: Stable Marriage) Welcome to COT5405.
Advertisements

Lecture 6 CSE 331 Sep 14. A run of the GS algorithm Mal Wash Simon Inara Zoe Kaylee.
CSE 421 Algorithms Richard Anderson Lecture 2. Announcements Office Hours –Richard Anderson, CSE 582 Monday, 10:00 – 11:00 Friday, 11:00 – 12:00 –Yiannis.
Lecture 4 CSE 331 Sep 9, Blog posts for lectures Starts from today See Sep 8 post on the blog.
Lecture 5 CSE 331 Sep 11, HW 1 out today Will be handed out at the END of the lecture Read the homework policy document carefully START EARLY! ©ehow.com.
Lecture 7 CSE 331 Sep 16, Feedback forms VOLUNTARY Last 5 mins of the lecture.
Lecture 10 CSE 331 Sep 22, Acceptable formats for blog posts Plain text LaTeX HTML.
Lecture 8 CSE 331 Sep 18, Homeworks Hand in your HW 1 HW 2 and solutions to HW 1 out at the end of class Not naming your collaborators is same as.
CSE 421 Algorithms Richard Anderson Lecture 3. Classroom Presenter Project Understand how to use Pen Computing to support classroom instruction Writing.
Lecture 9 CSE 331 Sep 21, Gale-Shapley Algorithm Intially all men and women are free While there exists a free woman who can propose Let w be such.
Lecture 8 CSE 331 Sep 17, HW 1 due today Place Q1 and Q2 in separate piles I will not accept HWs after 1:15pm.
Lecture 6 CSE 331 Sep 10, Homeworks HW 1 posted online: see blog/piazza Pickup graded HW 0 in TA OHs.
The Stable Marriage Problem
1 Stable Matching Problem Goal. Given n men and n women, find a "suitable" matching. n Participants rate members of opposite sex. n Each man lists women.
Lecture 4 CSE 331 Sep 6, TA change Swapnoneel will leave us for 531 Jiun-Jie Wang will join us.
Lecture 3 CSE 331. Stable Matching Problem Problem Statement Algorithm Problem Definition Implementation Analysis.
Lecture 2 CSE 331. Day 1 Survey On UBlearns Day 1 Survey (talking points) Security MS PhD for research Building PC’s for 442 It’s ok to play games –
Lecture 5 CSE 331 Sep 11, Submit the form I’ll need confirmation in writing. No graded material will be handed back till I get this signed form.
CSE 331: Review. Main Steps in Algorithm Design Problem Statement Algorithm Real world problem Problem Definition Precise mathematical def “Implementation”
CSE 421 Algorithms Richard Anderson (for Anna Karlin) Winter 2006 Lecture 2.
The Stable Marriage Problem
Asymptotic Analysis CSE 331. Definition of Efficiency An algorithm is efficient if, when implemented, it runs quickly on real instances Implemented where?
CSCI 256 Data Structures and Algorithm Analysis Lecture 2 Some slides by Kevin Wayne copyright 2005, Pearson Addison Wesley all rights reserved, and some.
Matching Boys Girls A B C D E
Stable Matching.
Stable Marriage Problem
Lecture 4 CSE 331 Sep 7, 2016.
Lecture 8 CSE 331 Sep 14, 2011.
Lecture 5 CSE 331 Sep 8, 2017.
Lecture 6 CSE 331 Sep 9, 2013.
CSE 421: Introduction to Algorithms
Lecture 5 CSE 331 Sep 10, 2010.
Lecture 7 CSE 331 Sep 15, 2010.
Lecture 4 CSE 331 Sep 6, 2017.
Lecture 7 CSE 331 Sep 14, 2016.
Lecture 6 CSE 331 Sep 11, 2017.
Lecture 6 CSE 331 Sep 13, 2010.
Lecture 9 CSE 331 Sep 20, 2010.
S. Raskhodnikova; based on slides by K. Wayne
Lecture 8 CSE 331 Sep 12, 2014.
Lecture 9 CSE 331 Sep 18, 2017.
Lecture 7 CSE 331 Sep 13, 2017.
Lecture 9 CSE 331 Sep 19, 2012.
CSE 421: Introduction to Algorithms
Lecture 3 CSE 331 Sep 2, 2016.
Discrete Math for CS CMPSC 360 LECTURE 9 Last time: Strong induction
Lecture 5 CSE 331 Sep 6, 2013.
Lecture 5 CSE 331 Sep 7, 2012.
Lecture 3 CSE 331 Sep 1, 2017.
Lecture 8 CSE 331 Sep 16, 2016.
Lecture 7 CSE 331 Sep 13, 2011.
Lecture 9 CSE 331 Sep 19, 2016.
Lecture 10 CSE 331 Sep 21, 2011.
Lecture 12 CSE 331 Sep 27, 2010.
Richard Anderson Autumn 2016 Lecture 2
Lecture 8 CSE 331 Sep 15, 2017.
Lecture 10 CSE 331 Sep 21, 2012.
Lecture 6 CSE 331 Sep 12, 2011.
Lecture 8 CSE 331 Sep 15, 2011.
Lecture 9 CSE 331 Sep 15, 2014.
Lecture 9 CSE 331 Sep 20, 2010.
Lecture 5 CSE 331 Sep 5, 2014.
Richard Anderson Winter 2009 Lecture 2
Lecture 7 CSE 331 Sep 10, 2014.
Piyush Kumar (Lecture 3: Stable Marriage)
Lecture 5 CSE 331 Sep 9, 2011.
Lecture 9 CSE 331 Sep 19, 2011.
Lecture 7 CSE 331 Sep 11, 2013.
Lecture 5 CSE 331 Sep 9, 2016.
Lecture 11 CSE 331 Sep 20, 2013.
Presentation transcript:

Lecture 6 CSE 331 Sep 12, 2016

Mini project group due in 2 weeks

Gale-Shapley Algorithm Intially all men and women are free While there exists a free woman who can propose Let w be such a woman and m be the best man she has not proposed to w proposes to m If m is free (m,w) get engaged Else (m,w’) are engaged If m prefers w’ to w w remains free Else (m,w) get engaged and w’ is free Output the engaged pairs S as the final output

Once a man gets engaged, he remains engaged (to “better” women) Observation 1 Intially all men and women are free While there exists a free woman who can propose Let w be such a woman and m be the best man she has not proposed to w proposes to m If m is free (m,w) get engaged Once a man gets engaged, he remains engaged (to “better” women) Else (m,w’) are engaged If m prefers w’ to w w remains free Else (m,w) get engaged and w’ is free Output the engaged pairs S as the final output

If w proposes to m after m’, then she prefers m’ to m Observation 2 Intially all men and women are free While there exists a free woman who can propose Let w be such a woman and m be the best man she has not proposed to w proposes to m If m is free If w proposes to m after m’, then she prefers m’ to m (m,w) get engaged Else (m,w’) are engaged If m prefers w’ to w w remains free Else (m,w) get engaged and w’ is free Output the engaged pairs S as the final output

End of iteration t, define progress P(t) s.t.: Proof via “progress” Intially all men and women are free While there exists a free woman who can propose Let w be such a woman and m be the best man she has not proposed to w proposes to m End of iteration t, define progress P(t) s.t.: 1 ≤ P(t) ≤ n2 P(t+1) = P(t)+1 If m is free (m,w) get engaged Else (m,w’) are engaged If m prefers w’ to w w remains free Else (m,w) get engaged and w’ is free Output the engaged pairs as the final output

Today’s lecture GS algorithms always outputs a stable marriage

The Lemmas Lemma 1: The GS algorithm has at most n2 iterations Lemma 2: S is a perfect matching Lemma 3: S has no instability

Questions/Comments?

Extensions Fairness of the GS algorithm Different executions of the GS algorithm

Main Steps in Algorithm Design Problem Statement Problem Definition n! Algorithm “Implementation” Analysis Correctness Analysis

Definition of Efficiency An algorithm is efficient if, when implemented, it runs quickly on real instances Implemented where? Platform independent definition What are real instances? Worst-case Inputs N = 2n2 for SMP Efficient in terms of what? Input size N

Definition-II n! How much better? By a factor of 2? Analytically better than brute force How much better? By a factor of 2?

At most c.Nd steps (c>0, d>0 absolute constants) Definition-III Should scale with input size If N increases by a constant factor, so should the measure Polynomial running time At most c.Nd steps (c>0, d>0 absolute constants) Step: “primitive computational step”

More on polynomial time Problem centric tractability Can talk about problems that are not efficient!

Reading Assignments Sections 1.2, 2.1, 2.2 and 2.4 in [KT]

Asymptotic Analysis Travelling Salesman Problem (http://xkcd.com/399/)

Which one is better?

Now?

And now?

The actual run times n! 100n2 Asymptotic View n2

Asymptotic Notation ≤ is O with glasses ≥ is Ω with glasses