Volume 23, Issue 1, Pages 7-10 (May 1999)

Slides:



Advertisements
Similar presentations
Sudden cardiac death: A matter of faulty ion channels?
Advertisements

Tim Green, Stephen F Heinemann, Jim F Gusella  Neuron 
Chloride Channel Function
Electrostatic Fasteners Hold the T Cell Receptor-CD3 Complex Together
Vishwanath Jogini, Benoît Roux  Biophysical Journal 
Francesco Tombola, Maximilian H. Ulbrich, Ehud Y. Isacoff  Neuron 
Figure 1. Type and distribution within KCNQ2 protein of variants in self-limiting epilepsy vs epileptic encephalopathy Type and distribution within KCNQ2.
TARPs and the AMPA Receptor Trafficking Paradox
Common Principles of Voltage-Dependent Gating for Hv and Kv Channels
Neurobiology: The acid test for resting potassium channels
Helen C. Lai, Michael Grabe, Yuh Nung Jan, Lily Yeh Jan  Neuron 
How Far Will You Go to Sense Voltage?
Noa Zerangue, Blanche Schwappach, Yuh Nung Jan, Lily Yeh Jan  Neuron 
Dalian Zhong, Li-Min Yang, Paul Blount  Biophysical Journal 
An Intersubunit Interaction Regulates Trafficking of Rod Cyclic Nucleotide-Gated Channels and Is Disrupted in an Inherited Form of Blindness  Matthew.
Volume 26, Issue 1, Pages e3 (January 2018)
Volume 81, Issue 4, Pages (February 2012)
Molecular biology of K+ channels and their role in cardiac arrhythmias1  Martin Tristani-Firouzi, MD, Jun Chen, MD, John S Mitcheson, PhD, Michael C Sanguinetti,
From Ionic Currents to Molecular Mechanisms
Volume 79, Issue 4, Pages (August 2013)
M. Chincholkar  British Journal of Anaesthesia 
Einav Gross, David B Kastner, Chris A Kaiser, Deborah Fass  Cell 
Volume 11, Issue 11, Pages (November 2003)
Crystal Structure of the Human High-Affinity IgE Receptor
Brett A. Simms, Gerald W. Zamponi  Neuron 
De Novo Mutations in the Sodium-Channel Gene SCN1A Cause Severe Myoclonic Epilepsy of Infancy  Lieve Claes, Jurgen Del-Favero, Berten Ceulemans, Lieven.
Channelopathies: Kir2.1 mutations jeopardize many cell functions
Sang-Ah Seoh, Daniel Sigg, Diane M Papazian, Francisco Bezanilla 
Common Principles of Voltage-Dependent Gating for Hv and Kv Channels
AMPA Receptor Trafficking and the Control of Synaptic Transmission
Volume 11, Issue 2, Pages (August 1999)
AMPA Receptor Activation
Importing Mitochondrial Proteins: Machineries and Mechanisms
Large-Scale Movement within the Voltage-Sensor Paddle of a Potassium Channel— Support for a Helical-Screw Motion  Amir Broomand, Fredrik Elinder  Neuron 
Volume 24, Issue 2, Pages (February 2016)
Voltage-gated ion channels
The Nucleotide-Binding Sites of SUR1: A Mechanistic Model
Sharona E Gordon, Michael D Varnum, William N Zagotta  Neuron 
Alexander Peyser, Dirk Gillespie, Roland Roth, Wolfgang Nonner 
Volume 91, Issue 5, Pages (November 1997)
Volume 39, Issue 3, Pages (July 2003)
AMPA Receptor Activation
Ehud Y. Isacoff, Lily Y. Jan, Daniel L. Minor  Neuron 
Coats, Tethers, Rabs, and SNAREs Work Together to Mediate the Intracellular Destination of a Transport Vesicle  Huaqing Cai, Karin Reinisch, Susan Ferro-Novick 
Episodic Neurological Channelopathies
Amir Sapir, Ori Avinoam, Benjamin Podbilewicz, Leonid V. Chernomordik 
Protein Translocation Is Mediated by Oligomers of the SecY Complex with One SecY Copy Forming the Channel  Andrew R. Osborne, Tom A. Rapoport  Cell  Volume.
Volume 95, Issue 5, Pages (November 1998)
Molecular Structure of the PKD Protein Complex Finally Solved
Reconstructing Voltage Sensor–Pore Interaction from a Fluorescence Scan of a Voltage-Gated K+ Channel  Chris S Gandhi, Eli Loots, Ehud Y Isacoff  Neuron 
Structural Basis for FGF Receptor Dimerization and Activation
Volume 40, Issue 2, Pages (October 2003)
Quickening the Pace Neuron
Volume 49, Issue 5, Pages (March 2006)
Mechanisms Contributing to T Cell Receptor Signaling and Assembly Revealed by the Solution Structure of an Ectodomain Fragment of the CD3ϵγ Heterodimer 
A Twist on Potassium Channel Gating
AMPK and SNF1: Snuffing Out Stress
Volume 57, Issue 3, Pages (March 2000)
Volume 91, Issue 5, Pages (November 1997)
Renal potassium channels: Function, regulation, and structure
Ingo H. Greger, Jake F. Watson, Stuart G. Cull-Candy  Neuron 
Voltage-Gated Ion Channels and Electrical Excitability
Symmetry, Selectivity, and the 2003 Nobel Prize
Mike O'Donnell, David Jeruzalmi, John Kuriyan  Current Biology 
Structural Basis of Inward Rectification
Volume 26, Issue 4, Pages (May 2007)
Protons at the Gate Neuron
Dian Ding, Mengmeng Wang, Jing-Xiang Wu, Yunlu Kang, Lei Chen 
Dalian Zhong, Li-Min Yang, Paul Blount  Biophysical Journal 
Volume 15, Issue 5, Pages (May 2007)
Presentation transcript:

Volume 23, Issue 1, Pages 7-10 (May 1999) Potassium Channels  Diane M Papazian  Neuron  Volume 23, Issue 1, Pages 7-10 (May 1999) DOI: 10.1016/S0896-6273(00)80746-1

Figure 1 Putative Membrane Topologies of K+ Channel Subunits (A) Membrane topology of a voltage-gated potassium channel α subunit. Shaker-like potassium channel subunits have cytoplasmic amino and carboxyl termini, six transmembrane segments, and a reentrant P loop. Approximate locations of the amino-terminal assembly domain, the voltage sensor, and the pore are shown. Red dots indicate the approximate locations of two cysteines, C96 and C505, in Shaker that can be oxidized to form an intersubunit disulfide bond (Schulteis et al. 1996). (B) Membrane topology of components of the KATP channel. (Left) Topology of Kir6.1 or 6.2, the pore-forming subunits of KATP. (Right) Putative topology of SUR (Zerangue et al. 1999, and references therein). Blue dots indicate the approximate locations of the RKR retention/recycling signals in the Kir6.2 and SUR proteins. Neuron 1999 23, 7-10DOI: (10.1016/S0896-6273(00)80746-1)

Figure 1 Putative Membrane Topologies of K+ Channel Subunits (A) Membrane topology of a voltage-gated potassium channel α subunit. Shaker-like potassium channel subunits have cytoplasmic amino and carboxyl termini, six transmembrane segments, and a reentrant P loop. Approximate locations of the amino-terminal assembly domain, the voltage sensor, and the pore are shown. Red dots indicate the approximate locations of two cysteines, C96 and C505, in Shaker that can be oxidized to form an intersubunit disulfide bond (Schulteis et al. 1996). (B) Membrane topology of components of the KATP channel. (Left) Topology of Kir6.1 or 6.2, the pore-forming subunits of KATP. (Right) Putative topology of SUR (Zerangue et al. 1999, and references therein). Blue dots indicate the approximate locations of the RKR retention/recycling signals in the Kir6.2 and SUR proteins. Neuron 1999 23, 7-10DOI: (10.1016/S0896-6273(00)80746-1)

Figure 2 Model for RKR Signaling during KATP Biogenesis The model shows a partially assembled complex of four Kir6.2 subunits (yellow) and three SUR subunits (dark blue), plus a monomeric SUR subunit that has not yet joined the complex. RKR sequences in Kir6.2 and SUR are indicated by light blue and red dots, respectively. These RKR sequences are exposed in Kir6.2 tetramers, monomeric SUR, and KATP complexes with fewer than eight subunits (Zerangue et al. 1999). Presumably, RKR interacts with components of the ER quality control system to prevent trafficking of partially assembled complexes beyond the cis-Golgi compartment. Neuron 1999 23, 7-10DOI: (10.1016/S0896-6273(00)80746-1)