University of Tuebingen,

Slides:



Advertisements
Similar presentations
IS THE NEUTRINO A MAJORANA OR A DIRAC PARTICLE ? Ettore Fiorini, Bologna June or Lepton number conservation or violation Has neutrino a finite.
Advertisements

Amand Faessler, München, 24. November Double Beta Decay and Physics beyond the Standard Model Amand Faessler Tuebingen Accuracy of the Nuclear Matrix.
Neutrinoless Double Beta Decay
Amand Faessler, GERDA, 11. November Double Beta Decay and Neutrino Masses Amand Faessler Tuebingen Accuracy of the Nuclear Matrix Elements. It determines.
Amand Faessler, Tuebingen1 Double Beta Decay and Neutrino Masses Amand Faessler Tuebingen Neutrino Masses and the Neutrinoless Double Beta Decay: Dirac.
Amand Faessler, 22. Oct Double Beta Decay and Neutrino Masses Amand Faessler Tuebingen Accuracy of the Nuclear Matrix Elements. It determines the.
Description of Double Beta Decay, Nuclear Structure and Physics beyond the Standard Model - Status and Prospects. Amand Faessler University of Tuebingen.
The disappearance of a nuclear physicist: Ettore Majorana born 1906 in Catania disappeared March 26, 1938 Amand Faessler, Tuebingen.
Neutrino Masses, Leptogenesis and Beyond The Incredible Foresight of ETTORE MAJORANA Haim Harari Erice, August 31, 2006.
Alpha decay Beta decay Henri Bequerel Pierre and Marie Curie.
March 12, 2005Benasque Neutrinos Theory Neutrinos Theory Carlos Pena Garay IAS, Princeton ~
Amand Faessler, Tuebingen Double Beta Decay and Neutrino Masses Amand Faessler Tuebingen 1. Solution of the Solar Neutrino Problem by SNO. 2. Neutrino.
Determining the neutrino mass:
No s is good s Sheffield Physoc 21/04/2005 Jeanne Wilson A historical introduction to neutrinoless double beta decay.
Modern Physics LECTURE II.
P461 - decays II1 Beta Decays Beta decays are proton -> neutrons or neutron -> proton transitions involve W exchange and are weak interaction the last.
Massive neutrinos Dirac vs. Majorana
1 TCP06 Parksville 8/5/06 Electron capture branching ratios for the nuclear matrix elements in double-beta decay using TITAN ◆ Nuclear matrix elements.
Double beta decay and neutrino physics Osaka University M. Nomachi.
Anti-neutrinos Spectra from Nuclear Reactors Alejandro Sonzogni National Nuclear Data Center.
Neutrino Nobel Prize overview
Neutrinoless double-beta decay and the SuperNEMO project. Darren Price University of Manchester 24 November, 2004.
On 4 December 1930, Austrian theorist Wolfgang Pauli (pictured here in 1933) wrote a famous letter in which he dared to hypothesise the existence of new.
Position sensitive CZT detectors for the COBRA neutrinoless double beta decay project Brian Fulton University of York Neutrinoless double beta decay The.
NEMO3 experiment: results G. Broudin-Bay LAL (CNRS/ Université Paris-Sud 11) for the NEMO collaboration Moriond EW conference La Thuile, March 2008.
March 7, 2005Benasque Neutrinos Theory Neutrinos Theory Carlos Pena Garay IAS, Princeton ~
Wednesday, Jan. 15, 2003PHYS 5396, Spring 2003 Jae Yu 1 PHYS 5396 – Lecture #2 Wednesday, Jan. 15, 2003 Dr. Jae Yu 1.What is a neutrino? 2.History of neutrinos.
Feynman Diagrams Richard Feynman invented the concept of virtual photons as part of his theory of quantum electrodynamics. The maths is complicated – but,
„The uncertainty in the calculated nuclear matrix elements for neutrinoless double beta decay will constitute the principle obstacle to answering some.
Amand Faessler, Madrid, 8. June Double Beta Decay, a Test for New Physics Amand Faessler Tuebingen „The Nuclear Matrix Elements for the  are.
60 27 Co Ni +  - + e Beta Decay: 13 7 N 13 6 C +  + + e Conservation of charge Beta minus - electron “As if” neutron -> proton + electron Beta.
Amand Faesler, University of Tuebingen, Germany. Short Range Nucleon-Nucleon Correlations, the Neutrinoless Double Beta Decay and the Neutrino Mass.
Neutrinoless Double Beta Decay and the Majorana Neutrino
New Physics and Neutrino Mass: Facts and Fancy
1 A.Zalewska, Epiphany 2006 Introduction Agnieszka Zalewska Epiphany Conference on Neutrinos and Dark Matter, Epiphany Conference on Neutrinos.
 All elementary particles in physics are classified as either fermions or bosons. Quantum physics demonstrates the particles may have an intrinsic non-zero.
Search for Neutrinoless Double-Beta Decay Werner Tornow Duke University & Triangle Universities Nuclear Laboratory (TUNL) & Kavli-Tokyo Institute of the.
PHYS 3446 – Lecture #10 Nuclear Radiation Energy Deposition in Media
and what we unsuccessfully tried to explain (so far)
CHAPTER 14 Elementary Particles
Neutrino Masses and Flavor Mixing H. Fritzsch.
Neutrino Masses and Flavor Mixing H. Fritzsch LMU Munich.
HOW TO TELL DIFFERENCE OF MAJORANA/DIRAC NEUTRINOS
Sun Yat-Sen University
J.J. Gómez-Cadenas IFIC-Valencia Summer Student School CERN, July,2006
Kazuo Muto Tokyo Institute of Technology (TokyoTech)
Derivation of Electro-Weak Unification and Final Form of Standard Model with QCD and Gluons  1W1+  2W2 +  3W3.
Neutrino Masses, Double Beta Decay and Nuclear Structure
The Physics of Neutrinos
PHYS 5326 – Lecture #1 Class specifications and plans
Handout 9 : The Weak Interaction and V-A
Weak Interaction Part 1 HT 2003
Maarten de Jong Nikhef & Leiden University
Amand Faessler University of Tuebingen
II. Nuclear (Radioactive) Decay
Determining the absolute masses of neutrinos
Wednesday, October 10 Ford: Chs 1-3.
More leptons.
b g Beta and Gamma Decay Contents: Beta
Quantum Computing: the Majorana Fermion Solution
PHYS 3446 – Lecture #10 Nuclear Radiation Energy Deposition in Media
Neutrino Oscillations
Testing Seesaw at LHC 郑亚娟.
Can the Electron-Neutrino Mass be determined by Electron Capture?
The mass numbers on the left and right of the equations must be equal.
Institut de Physique Nucléaire Orsay, France
Kazuo MUTO Tokyo Institute of Technology
Search for Lepton-number Violating Processes
Particle Physics and The Standard Model
Some Comments to the Neutrinoless Double Beta-Decay
Presentation transcript:

University of Tuebingen, Why did Ettore Majorana invent the „Majorana Neutrino“ and is the Neutrino really „Majorana“? Amand Faessler University of Tuebingen, GERMANY Messina 3 -6 October 2018

Amand Faessler, Messina 1930 Beta-Spectrum : 1930 Beta-Decay Z Z  Z+1 + e- Z+1 Wolfgang Pauli: On December 4th. 1930: Letter from Zuerich to Tuebingen: Sehr geehrte radioaktiven Damen und Herren, Dear radioactive Ladies and Gentelmen, Z (,N)  Z+1 (,N-1) + e- + nc Electron Energy Pauli: „The Neutrino can not be measured.“ Amand Faessler, Messina

Detection of the Neutrinos: 1956 Reines and Cowan : Electron-Neutrinos 1962 Steinberger : Myon-Neutrinos 2000 DONAT Collaboration : Tau-Neutrinos 1995 on: Neutrino Oscillations  Neutrinos have a mass Helicity not good for massive Neutrinos. vneutrino left handed Spin HELICITY≠CHIRALITY Vanti-n right handed Spin Amand Faessler, Messina

Amand Faessler, Messina Why did Ettore Majorana invent the „Majorana Neutrino“? 1933 -1937: Ettore Majorana lives secluded in Rome (See talk of E. Recami) 1933 – 1937 lived practically alone in an appartment of the Majorana family in Rome, curtains closed and only his physics friends send him somtimes a hair cutter. He publishes no paper. 1937 competition for three theoretical chairs (Chairman of committee: Enriquo Fermi *1901, +1954 ) short list: 1. Gian Carlo Wick (Palermo => Turino, *1909 +1992) 2. Giulio Racah (Pisa => Israel. *1909, +1965) 3. Giovanni Gentile (junior,*1906 +1942; Cagliari/Sardinia) Father Minister of Mussolini (Castelveterano) Amand Faessler, Messina

Ettore Majorana (See talk of Erasmo Recami) Surprising application for a chairs by Ettore Majorana: „Chiara fama“ (due to the undoubtable good reputation) → Naples For the competition has has to write an scientific article: „La Teorica simmetrica dell‘ electrone e del positrone“ Nuovo Cimento , Vol. 14, 1937, pp. 171 – 184. Electron different from Positron (Dirac Particle), but Ettore Majorana: Neutrino can be identical with antineutrino: Majorana Neutrino Amand Faessler, Messina

Ettore Majorana in Naples Oct. 1937 Script of the Lecture 25.1.XVI Copy from Aldo Covello 25. Januar 1938 in Napels 26. March 1938 disappeared without a trace Ship: Napels→ Palermo → Napels ?? Amand Faessler, Messina

Can one distinguish experimentally between Dirac and Majorana Neutrinos? Nucleus: Z+1, A Thesis: Maria Goeppert- Mayer1935 Goettingen: Two-Neutrino Double-Beta Decay. Proton P P Electron Antineutrino Spin parallel n n neutron Nucleus: Z, A How can we proof, that the Neutrino is „Majorana“?

Amand Faessler, Messina Neutrinoless Double Beta-Decay (Lepton Number and Helicity ) forbidden in the Standard Model. Se P P Left Energy difference 76Ge  76Se: Q = 2038 keV Phase Space 106 x 2νββ ν Left n n Only possible for massive Majorana Neutrinos. Amand Faessler, Messina

Amand Faessler, Messina GERDA 76Ge  76Se (Heidelb.+Muenchen+Tueb.) in Gran Sasso, Jan. 2018; Qbb = 2038 keV 2038 keV Sum of Energy of the two Electrons [keV] 90 % Confidence Limit: T0n ½ > 8x1025 [years]; Background: 10-3 counts/(keV*kg*year) GERDA Collaboration: Agostini et al. Phys. Rev. Lett. 120 (2018) 132503 Amand Faessler, Messina

CUORE 130Te  130Xe (Status 2018, Milano, Roma Sapienza, Zaragoza) in Gran Sasso; Qbb = 2528 keV 60Co 2528 keV Sum of Energies of the two electrons [keV] 90 % Confidence Limit : T0n1/2 > 2.7x1024 [years]

Amand Faessler, Messina Majorana Fermions in Solid State Physics S. R. Elliott and M. Franz: Rev. Mod. Phys. 87 (2015) 137 Fermi Surface Fermi-Energy vk2 = u-k2 = 1/2 Supra- conductor: (vk)2 Sharp „Fermi Surface“ Diffuse „Fermi Surface„ u2 + v2 = 1 1 Electron Occupation (vk)2 =1-(u-k)2 Electron Energy Quasi-Particle: a+k = uk c+k + vk c-k ; ak = uk c-k + vk c+k Quasi-Particle = Quasi-Hole near/at the Fermi Surface Amand Faessler, Messina

New Commutative Properties: Winding Number A Novel Quantum-Mechanical Behavior Bosons Fermions - Majorana (topologic, chiral) Fermions Non-Abelian Anyions Amand Faessler, Messina

Amand Faessler, Messina Quantum Computer more stable qubits due to topological (chiral) winding number. q-bits = q; Binary code. |0> [= q = 0] winding number zero ; |1> [= q = 1] winding number 1 q = a |0> + b |1>; a2 + b2 = 1 Quanten–Computer: |q6 q5 q4 q3 q2 q1>  all numbers from 0 to 63 Amand Faessler, Messina

Summary of the „Majorana Neutrinos“ Dirac-Neutrinos: Neutrino different from Antineutrino Majorana-Neutrino: Neutrino = Antineutrino Neutrino Oscillations  Neutrinos have a mass (helicity ???) (Grand Unified Theories) require as a rule Majorana Neutrinos. Neutrinoless Double Beta Decay only possible for massive Majorana Neutrinos. Not yet found. Neutrinoless Double Beta Decay allows to determine the mass of the Majorana Neutrino with the matrix element. Majorana Fermions in supraconducting solids. Hope: Topolocical Winding Number  more stable q-bits? The END Amand Faessler, Messina