Volume 103, Issue 6, Pages (September 2012)

Slides:



Advertisements
Similar presentations
Teresa K. Aman, Indira M. Raman  Biophysical Journal 
Advertisements

Negative Feedback Synchronizes Islets of Langerhans
Multi-Image Colocalization and Its Statistical Significance
Sukant Mittal, Ian Y. Wong, William M. Deen, Mehmet Toner 
Rapid Assembly of a Multimeric Membrane Protein Pore
Volume 104, Issue 2, Pages (January 2013)
Velocity Fields in a Collectively Migrating Epithelium
Bipedal Locomotion in Crawling Cells
Unsteady Motion, Finite Reynolds Numbers, and Wall Effect on Vorticella convallaria Contribute Contraction Force Greater than the Stokes Drag  Sangjin.
Volume 93, Issue 9, Pages (November 2007)
Substrate Viscosity Enhances Correlation in Epithelial Sheet Movement
Volume 96, Issue 11, Pages (June 2009)
Shijie He, Chenglin Liu, Xiaojun Li, Shaopeng Ma, Bo Huo, Baohua Ji 
Lara Scharrel, Rui Ma, René Schneider, Frank Jülicher, Stefan Diez 
Jordi Soriano, Sten Rüdiger, Pramod Pullarkat, Albrecht Ott 
Dynamical Scenarios for Chromosome Bi-orientation
Platelet Adhesive Dynamics
Negative Feedback Synchronizes Islets of Langerhans
Reversible Phosphorylation Subserves Robust Circadian Rhythms by Creating a Switch in Inactivating the Positive Element  Zhang Cheng, Feng Liu, Xiao-Peng.
Volume 111, Issue 2, Pages (July 2016)
Hirokazu Tanimoto, Masaki Sano  Biophysical Journal 
Is Aggregate-Dependent Yeast Aging Fortuitous
Worms under Pressure: Bulk Mechanical Properties of C
Anil K. Dasanna, Christine Lansche, Michael Lanzer, Ulrich S. Schwarz 
Cellular Contraction Can Drive Rapid Epithelial Flows
Homodimeric Kinesin-2 KIF3CC Promotes Microtubule Dynamics
Cholesterol Depletion Mimics the Effect of Cytoskeletal Destabilization on Membrane Dynamics of the Serotonin1A Receptor: A zFCS Study  Sourav Ganguly,
Mesoscale Simulation of Blood Flow in Small Vessels
Cell Traction Forces Direct Fibronectin Matrix Assembly
Volume 94, Issue 12, Pages (June 2008)
Gustav Persson, Per Thyberg, Jerker Widengren  Biophysical Journal 
Probing Red Blood Cell Morphology Using High-Frequency Photoacoustics
Volume 105, Issue 1, Pages (July 2013)
Volume 111, Issue 7, Pages (October 2016)
V.M. Burlakov, R. Taylor, J. Koerner, N. Emptage  Biophysical Journal 
Teresa K. Aman, Indira M. Raman  Biophysical Journal 
Volume 102, Issue 1, Pages (January 2012)
Volume 111, Issue 12, Pages (December 2016)
Volume 96, Issue 11, Pages (June 2009)
Strongly Accelerated Margination of Active Particles in Blood Flow
Drift and Behavior of E. coli Cells
Rapid Assembly of a Multimeric Membrane Protein Pore
Will J. Eldridge, Zachary A. Steelman, Brianna Loomis, Adam Wax 
Dynamics of Active Semiflexible Polymers
Hung-Yu Chang, Xuejin Li, George Em Karniadakis  Biophysical Journal 
Volume 105, Issue 10, Pages (November 2013)
Volume 111, Issue 1, Pages (July 2016)
Felix Ruhnow, David Zwicker, Stefan Diez  Biophysical Journal 
Aligning Paramecium caudatum with Static Magnetic Fields
Volume 111, Issue 7, Pages (October 2016)
Volume 112, Issue 10, Pages (May 2017)
Adam Sokolow, Yusuke Toyama, Daniel P. Kiehart, Glenn S. Edwards 
Multi-Image Colocalization and Its Statistical Significance
Long-Range Nonanomalous Diffusion of Quantum Dot-Labeled Aquaporin-1 Water Channels in the Cell Plasma Membrane  Jonathan M. Crane, A.S. Verkman  Biophysical.
Volume 97, Issue 7, Pages (October 2009)
Nobuhiko Watari, Ronald G. Larson  Biophysical Journal 
Mathias Sander, Heike Dobicki, Albrecht Ott  Biophysical Journal 
Christina Ketchum, Heather Miller, Wenxia Song, Arpita Upadhyaya 
John E. Pickard, Klaus Ley  Biophysical Journal 
Volume 111, Issue 3, Pages (August 2016)
Volume 104, Issue 4, Pages (February 2013)
A New Angle on Microscopic Suspension Feeders near Boundaries
Anil K. Dasanna, Christine Lansche, Michael Lanzer, Ulrich S. Schwarz 
Frequency-Dependent Shear Impedance of the Tectorial Membrane
Volume 101, Issue 9, Pages (November 2011)
Quantitative Modeling and Optimization of Magnetic Tweezers
Jérémie Barral, Frank Jülicher, Pascal Martin  Biophysical Journal 
George D. Dickinson, Ian Parker  Biophysical Journal 
Volume 98, Issue 1, Pages (January 2010)
Huan Lei, George Em Karniadakis  Biophysical Journal 
Presentation transcript:

Volume 103, Issue 6, Pages 1162-1169 (September 2012) Flow Loading Induces Oscillatory Trajectories in a Bloodstream Parasite  Sravanti Uppaluri, Niko Heddergott, Eric Stellamanns, Stephan Herminghaus, Andreas Zöttl, Holger Stark, Markus Engstler, Thomas Pfohl  Biophysical Journal  Volume 103, Issue 6, Pages 1162-1169 (September 2012) DOI: 10.1016/j.bpj.2012.08.020 Copyright © 2012 Biophysical Society Terms and Conditions

Figure 1 (a) Simulation of flow profile (ComSol Multiphysics) in a square channel. (b) The dotted line corresponds to parabolic velocity profile as a function of distance from the center of the channel (shown for different average flow velocities). (c) Schematic of T. brucei. (d) Only cells in the middle plane are observed in the symmetric channel. Biophysical Journal 2012 103, 1162-1169DOI: (10.1016/j.bpj.2012.08.020) Copyright © 2012 Biophysical Society Terms and Conditions

Figure 2 (a) Single stroboscopic image taken at 300 Hz of a live cell (top channel) and an immotile cell (lower channel), both fluorescently labeled, in a microfluidic channel. Despite the channel flow velocity of 1.6 mm/s, which is much higher than their own velocity, live T. brucei (top) are able to swim the width of the channel, whereas a dead cell stays in the same lateral position and is carried by the flow. (b) Montage of a cell moving in pressure-driven flow through a microfluidic channel. The cell (indicated by the black arrow) moves in a sinusoidal trajectory within an upstream orientation. Channel width is 23 μm. In the lowest panel, the cell’s actual trajectory is superimposed to the overlay of all frames in the montage, clearly showing the cell moving toward and away the channel wall. Biophysical Journal 2012 103, 1162-1169DOI: (10.1016/j.bpj.2012.08.020) Copyright © 2012 Biophysical Society Terms and Conditions

Figure 3 For live cells, the frequency of the oscillations increases with flow velocities while the amplitude decreases, as shown for experiment (symbols) and theory (black line/curve). Theory predicts the frequency to be proportional to the square root of velocity. The scaled velocity, Unorm, used for the abscissa is defined as the maximum flow velocity divided by the proper velocity of the trypanosomes. Biophysical Journal 2012 103, 1162-1169DOI: (10.1016/j.bpj.2012.08.020) Copyright © 2012 Biophysical Society Terms and Conditions

Figure 4 Cell orientation relative to flow for live and immotile cells. For live cells in the absence of flow, an arbitrary direction is chosen for the flow. Biophysical Journal 2012 103, 1162-1169DOI: (10.1016/j.bpj.2012.08.020) Copyright © 2012 Biophysical Society Terms and Conditions

Figure 5 Orientation order parameter for live (red) and immotile (black) cells, shown for a range of velocities. Results are mirrored at the center for improved statistics. In the first panel, orientation without flow is measured by simply choosing a direction for flow. Biophysical Journal 2012 103, 1162-1169DOI: (10.1016/j.bpj.2012.08.020) Copyright © 2012 Biophysical Society Terms and Conditions

Figure 6 Mean orientation order parameter (for y = 2–20 μm) for live and immotile cells, shown as a function of the mean shear rate. Dashed lines are a guide to the eye. Biophysical Journal 2012 103, 1162-1169DOI: (10.1016/j.bpj.2012.08.020) Copyright © 2012 Biophysical Society Terms and Conditions

Figure 7 Histograms of end-to-end distance as a function of flow velocity (given in mm/s) for live and immotile cells. Without flow, both live cells and immobile cells exhibit the same average end-to-end distance. Whereas live cells show the same average elongation at all measured flow velocities, immotile cells appear to stretch in response to increased shear. The dashed line indicates the mean. Biophysical Journal 2012 103, 1162-1169DOI: (10.1016/j.bpj.2012.08.020) Copyright © 2012 Biophysical Society Terms and Conditions

Figure 8 Mean end-to-end distance versus average flow velocity Uave for immotile cells. Lower inset: Drag force resulting from fluid flow plotted as a function of cell stretching. Upper inset: Trypanosome cell body being stretched in a parabolic flow profile. Biophysical Journal 2012 103, 1162-1169DOI: (10.1016/j.bpj.2012.08.020) Copyright © 2012 Biophysical Society Terms and Conditions