Introduction to Scientific Computing II

Slides:



Advertisements
Similar presentations
Lab Course CFD Preliminay Discussion Dr. Miriam Mehl Institut für Informatik Schwerpunkt Wissenschaftliches Rechnen.
Advertisements

Practical Course SC & V Free Boundary Value Problems Dr. Miriam Mehl Institut für Informatik Scientific Computing in Computer Science.
CSE Seminar Benefits of Hierarchy and Adaptivity Preliminary Discussion Dr. Michael Bader / Dr. Miriam Mehl Institut für Informatik Scientific Computing.
Practical Course SC & V More on Boundaries Dr. Miriam Mehl Institut für Informatik Schwerpunkt Wissenschaftliches Rechnen.
Institut für Informatik Scientific Computing in Computer Science Practical Course SC & V Time Discretisation Dr. Miriam Mehl.
School of something FACULTY OF OTHER School of Computing An Adaptive Numerical Method for Multi- Scale Problems Arising in Phase-field Modelling Peter.
Mutigrid Methods for Solving Differential Equations Ferien Akademie 05 – Veselin Dikov.
Scientific Computing Lab Results Worksheet 3 Dr. Miriam Mehl Institut für Informatik Scientific Computing in Computer Science.
Improvement of a multigrid solver for 3D EM diffusion Research proposal final thesis Applied Mathematics, specialism CSE (Computational Science and Engineering)
1 Iterative Solvers for Linear Systems of Equations Presented by: Kaveh Rahnema Supervisor: Dr. Stefan Zimmer
1 Numerical Solvers for BVPs By Dong Xu State Key Lab of CAD&CG, ZJU.
03/23/07CS267 Lecture 201 CS 267: Multigrid on Structured Grids Kathy Yelick
MULTISCALE COMPUTATIONAL METHODS Achi Brandt The Weizmann Institute of Science UCLA
Geometric (Classical) MultiGrid. Hierarchy of graphs Apply grids in all scales: 2x2, 4x4, …, n 1/2 xn 1/2 Coarsening Interpolate and relax Solve the large.
Algebraic MultiGrid. Algebraic MultiGrid – AMG (Brandt 1982)  General structure  Choose a subset of variables: the C-points such that every variable.
Technische Universität München Benefits of Structured Cartesian Grids for the Simulation of Fluid- Structure Interactions Miriam Mehl Department of Computer.
Influence of (pointwise) Gauss-Seidel relaxation on the error Poisson equation, uniform grid Error of initial guess Error after 5 relaxation Error after.
RECURSIVE PATTERNS WRITE A START VALUE… THEN WRITE THE PATTERN USING THE WORDS NOW AND NEXT: NEXT = NOW _________.
Scientific Computing Lab Organization Dr. Miriam Mehl Institut für Informatik Scientific Computing in Computer Science.
Multigrid for Nonlinear Problems Ferien-Akademie 2005, Sarntal, Christoph Scheit FAS, Newton-MG, Multilevel Nonlinear Method.
Improving Coarsening and Interpolation for Algebraic Multigrid Jeff Butler Hans De Sterck Department of Applied Mathematics (In Collaboration with Ulrike.
Introduction to Scientific Computing II Molecular Dynamics – Introduction Dr. Miriam Mehl Institut für Informatik Scientific Computing In Computer Science.
Van Emden Henson Panayot Vassilevski Center for Applied Scientific Computing Lawrence Livermore National Laboratory Element-Free AMGe: General algorithms.
Introduction to Scientific Computing II From Gaussian Elimination to Multigrid – A Recapitulation Dr. Miriam Mehl.
A Dirichlet-to-Neumann (DtN)Multigrid Algorithm for Locally Conservative Methods Sandia National Laboratories is a multi program laboratory managed and.
Introduction to Scientific Computing II Overview Michael Bader.
Introduction to Scientific Computing II Multigrid Dr. Miriam Mehl Institut für Informatik Scientific Computing In Computer Science.
Introduction to Scientific Computing II Multigrid Dr. Miriam Mehl.
Introduction to Scientific Computing II
MULTISCALE COMPUTATIONAL METHODS Achi Brandt The Weizmann Institute of Science UCLA
Introduction to Scientific Computing II Molecular Dynamics – Algorithms Dr. Miriam Mehl Institut für Informatik Scientific Computing In Computer Science.
Scientific Computing Lab Outlook / State of Research Dr. Miriam Mehl Institut für Informatik Scientific Computing in Computer Science.
Scientific Computing Lab Results Worksheet 4 Dr. Miriam Mehl Institut für Informatik Scientific Computing in Computer Science.
Multigrid Methods The Implementation Wei E Universität München. Ferien Akademie 19 th Sep
Scientific Computing Lab Organization Dr. Miriam Mehl Institut für Informatik Scientific Computing in Computer Science.
Optimizing 3D Multigrid to Be Comparable to the FFT Michael Maire and Kaushik Datta Note: Several diagrams were taken from Kathy Yelick’s CS267 lectures.
High Performance Computing Seminar II Parallel mesh partitioning with ParMETIS Parallel iterative solvers with Hypre M.Sc. Caroline Mendonça Costa.
Scientific Computing Lab
Scientific Computing Lab
MultiGrid.
Introduction to Multigrid Method
Introduction to Scientific Computing II
Pressure Poisson Equation
Efficient Parallel Simulation of Fluid Dynamics on Cartesian Grids
Scientific Computing Lab
Introduction to Scientific Computing II
Introduction to Scientific Computing II
Introduction to Scientific Computing II
Practical Course SC & V Discretization II AVS Dr. Miriam Mehl
Stencil Quiz questions
Introduction to Scientific Computing II
Introduction to Scientific Computing II
Introduction to Scientific Computing II
Introduction to Scientific Computing II
Introduction to Scientific Computing II
Introduction to Scientific Computing II
Introduction to Scientific Computing II
Introduction to Scientific Computing II
Introduction to Scientific Computing II
Stencil Quiz questions
Scientific Computing Lab
Redundant Ghost Nodes in Jacobi
Scientific Computing Lab
Introduction to Scientific Computing II
(Analyses Acceleration) (with Nested Iterations)
Introduction to Scientific Computing II
Introduction to Scientific Computing II
Scientific Computing Lab
University of Virginia
Spatial Discretisation
Presentation transcript:

Introduction to Scientific Computing II Institut für Informatik Scientific Computing In Computer Science Introduction to Scientific Computing II Multigrid Dr. Miriam Mehl

Multigrid – Recursive Algorithms V-cycle: one recursive call W-cycle: two recursive calls F-cycle: V-cycle on each level

Two Grid – Multigrid Example: 2D Poisson 5-point-stencil h two-grid analysis V-cycle 1/32 0.042 1/64 0.044 1/128 1/256 0.043 1/512 1/1024 1/2048

Multigrid – Some Rules smoother optimal smoothing not!!! optimal convergence small number of smoothing iterations!

Multigrid – Some Rules grid coarsening standard: doubling of h exceptions: unisotropic operators unstructured/adaptively refined grids

Multigrid – Some Rules restriction/interpolation order of restriction + order of interpolation > order of discretisation

Multigrid – Some Rules V-cycle faster W-cycle more robust

Multigrid – Outlook adaptively refined grids unisotropic operators line smoothers semicoarsening unstructured grids / general SLE algebraic multigrid