Solving Logarithmic Equations

Slides:



Advertisements
Similar presentations
Solve Exponential Equations
Advertisements

Exponential and Logarithmic Equations Section 3.4.
CH. 8.6 Natural Logarithms. Write 2 ln 12 – ln 9 as a single natural logarithm. 2 ln 12 – ln 9 = ln 12 2 – ln 9Power Property = lnQuotient Property 12.
5.4 Exponential and Logarithmic Equations Essential Questions: How do we solve exponential and logarithmic equations?
Exponential and Logarithmic Equations
7-5 Logarithmic & Exponential Equations
5-4 Exponential & Logarithmic Equations
7.6 – Solve Exponential and Log Equations
Example 6 Solution of Exponential Equations Chapter 5.3 Solve the following exponential equations: a. b.  2009 PBLPathways.
Logarithmic and Exponential Equations
Solving Equations with Logs Day 2. Solving equations with only one logarithm in it: If it is not base 10 and you can’t use your calculator, then the only.
EQ: How do you use the properties of exponents and logarithms to solve equations?
11.4 Notes Solving logarithmic equations Notes In this unit of study, you will learn several methods for solving several types of logarithmic equations.
8.6 Solving Exponential and Logarithmic Equations Goal: Solve exponential and logarithmic equations. Correct WS 8.5A.
11.3 – Exponential and Logarithmic Equations. CHANGE OF BASE FORMULA Ex: Rewrite log 5 15 using the change of base formula.
4.4 Solving Exponential and Logarithmic Equations.
8.5 – Exponential and Logarithmic Equations. CHANGE OF BASE FORMULA where M, b, and c are positive numbers and b, c do not equal one. Ex: Rewrite log.
Jeopardy 100 Condense Expand Simplify Solve Exponential Solve Logs 500.
Academy Algebra II/Trig 6.6: Solve Exponential and Logarithmic Equations Unit 8 Test ( ): Friday 3/22.
Solving Exponential and Logarithmic Equations Section 8.6.
Solving Exponential and Logarithmic Equations Section 6.6 beginning on page 334.
1. Expand the following: 2. Condense the following: Warm-upWarm-up.
Solving Log Equations  We will be using all of the properties.  You will have to figure out which ones to use and when to use them.  You will have.
6.4 – Solving Logarithmic Equations and Inequalities Objective: TSW solve logarithmic equations and inequalities.
Solve a logarithmic equation
EXAMPLE 4 Solve a logarithmic equation Solve log (4x – 7) = log (x + 5). 5 5 log (4x – 7) = log (x + 5) x – 7 = x x – 7 = 5 3x = 12 x = 4 Write.
The Equation Game. Why is an equation like a balance scale? 3 2x - 1 =
Logarithms 1 Converting from Logarithmic Form to Exponential Form and Back 2 Solving Logarithmic Equations & Inequalities 3 Practice Problems.
You’ve gotten good at solving exponential equations with logs… … but how would you handle something like this?
3.2 Solving Equations by Using Addition and Subtraction Addition Property of Equality –If the same number is added to each side of an equation, the resulting.
7.5 Notes: Solving Logs. What if there is a “log” in our equation?  What if our equations already have a “log” or “ln” in them? Can we still add “log”
EXAMPLE 1 Solve by equating exponents Rewrite 4 and as powers with base Solve 4 = x 1 2 x – 3 (2 ) = (2 ) 2 x – 3x – 1– 1 2 = 2 2 x– x + 3 2x =
Properties of Logarithms Change of Base Formula:.
Common Logarithms - Definition Example – Solve Exponential Equations using Logs.
Solving Logarithmic Equations
An exponential equation is one in which a variable occurs in the exponent. An exponential equation in which each side can be expressed in terms of the.
12.8 Exponential and Logarithmic Equations and Problem Solving Math, Statistics & Physics 1.
4.7 (Green) Solve Exponential and Logarithmic Equations No School: Monday Logarithms Test: 1/21/10 (Thursday)
Solving Equations Performing inverse operations on both sides (Involves backtracking)
Topic 10 : Exponential and Logarithmic Functions Solving Exponential and Logarithmic Equations.
3.4 Solving Exponential and Logarithmic Equations.
Write in logarithmic form Write in exponential form Write in exponential form Math
Textbook pages 69 & 73 IAN pages 91 & 95. Each side of the equation must be balanced. We balance an equation by doing the same thing to both sides of.
Solving and Graphing Absolute Value Inequalities
8.5 – Exponential and Logarithmic Equations
8.5 – Exponential and Logarithmic Equations
2 Understanding Variables and Solving Equations.
Solving Absolute Value Equations
Solving Equations by Factoring and Problem Solving
Exponential & Logarithmic Equations
Solving Exponential and Logarithmic Equations
7.5 Exponential and Logarithmic Equations
Properties of Logarithms
Logarithmic and exponential equations
What is an equation? An equation is a mathematical statement that two expressions are equal. For example, = 7 is an equation. Note: An equation.
2 Understanding Variables and Solving Equations.
Example 1 b and c Are Positive
Logarithmic and Exponential Equations
Learn to solve equations with integers.
Solving One Step Equations
Logarithmic and Exponential Equations
Keeper #39 Solving Logarithmic Equations and Inequalities
Solving 1-Step Integer Equations

Solving Systems of Equations by Elimination Part 2
Learn to solve equations with integers.
1. How do I Solve Linear Equations
Warm Up Solve. 1. log16x = 2. logx8 = 3 3. log10,000 = x
Logarithmic and exponential equations
Definition of logarithm
Presentation transcript:

Solving Logarithmic Equations

One-To-One Property of Logarithms CONDENSE each logarithm. If an equation contains only two logarithms, on opposite sides of the equal sign, with the same base then the problem can be solved by simply dropping the logarithms.

Example 1: Solve the following

Example 2: Solve the following

Example 3: Solve the following

Example 4: Solve the following Check Can NOT have a negative number!! The solution is ONLY…

Example 5: Solve the following

Example 6: Solve the following

Example 7: Solve the following Solving Equations with ONE Logarithm If an equation contains only one logarithms, rewrite the problem in exponential form. Example 7: Solve the following

Example 8: Solve the following

Example 9: Solve the following Can not have “negative” argument Check your answers