1 Chapter 6 Chemical Equilibrium. 2 Spontaneous Chemical Reactions The Gibbs Energy Minimum Consider the simple equilibrium reaction: A B The equilibrium.

Slides:



Advertisements
Similar presentations
AP Notes Chapter 16 Equilibrium Dynamic chemical system in which two reactions, equal and opposite, occur simultaneously.
Advertisements

Lecture 16.1 Chapter 16: Chemical Equilibria.
Chapter 12 Gaseous Chemical Equilibrium
Equilibrium. Equilibrium Some reactions (theoretically all) are reversible reactions, in which the products take part in a separate reaction to reform.
We will call μ the Chemical Potential Right now we will think of it as the molar free energy, but we will refine this definition later… Free Energy.
Chapter 6 Reaction Equilibrium in Ideal Gas Mixtures Physical Chemistry Chapter 6.
Reaction Equilibrium in Ideal Gas Mixture
Le Châtelier’s Principle
Philip Dutton University of Windsor, Canada N9B 3P4 Prentice-Hall © 2002 General Chemistry Principles and Modern Applications Petrucci Harwood Herring.
Chapter 16 Principles of Chemical Reactivity: Equilibria
Chapter 14 Chemical Equilibrium
Equilibrium Unit 10 1.
CHEMICAL AND PHASE EQUILIBRIUM (1)
Chapter 7: Chemical Equilibrium. 7.1 The Gibbs energy minimum 1. Extent of reaction ( ξ ): The amount of reactants being converted to products. Its unit.
Reaction Rates & Equilibrium
Chemical Equilibrium Chapter 6 pages Reversible Reactions- most chemical reactions are reversible under the correct conditions.
AP Chapter 15.  Chemical Equilibrium occurs when opposing reactions are proceeding at equal rates.  It results in the formation of an equilibrium mixture.
Chemistry. Chemical equilibrium-I Session Objectives.
Ch. 14: Chemical Equilibrium I.Introduction II.The Equilibrium Constant (K) III.Values of Equilibrium Constants IV.The Reaction Quotient (Q) V.Equilibrium.
Chapter 3 Chemical Equilibrium Atkins: Chapters 9,10,11
Chapter 16 Chemical and Phase Equilibrium Study Guide in PowerPoint to accompany Thermodynamics: An Engineering Approach, 5th edition by Yunus.
1 Chemical Equilibria Chapter Chemical reactions Can reverse (most of the time) Can reverse (most of the time) Though might require a good deal.
Chapter 14: Chemical Equilibrium Renee Y. Becker Valencia Community College 1.
Ch. 14: Chemical Equilibrium Dr. Namphol Sinkaset Chem 201: General Chemistry II.
16-2: The Law of Chemical Equilibrium. Remember… Chemical equilibrium is achieved when the rate of the forward rxn is equal to the rate of the reverse.
Chemical Equilibrium The study of reactions that occur in both directions.
H 2 O(l) --> H 2 O(s) Normal freezing point of H 2 O = K The change in enthalpy is the enthalpy of freezing - enthalpy change associated when one.
Atkins’ Physical Chemistry Eighth Edition Chapter 7 – Lecture 1 Chemical Equilibrium Copyright © 2006 by Peter Atkins and Julio de Paula Peter Atkins Julio.
1 General Concepts of Chemical Equilibrium. 2 In this chapter you will be introduced to basic equilibrium concepts and related calculations. The type.
Chemistry Thermodynamics Lecture 13 : Non Ideal Solutions and Activity Lecture 14 : Chemical Equilibria Lecture 15 : Kinetic Coefficients & the.
Equilibrium Math Concepts
Chapter 9: Chemical Equilibrium The forward and reverse reaction are both taking place at the same rate.
Characteristics of Equilibrium
Chapter 18: Thermodynamics Renee Y. Becker Valencia Community College.
Review: Expressions of the thermodynamic equilibrium constant K
Spontaneity and Equilibrium isolated system : Isothermal process  Maximum work obtained in a process at constant temperature is equal to the decrease.
UNIT 3 CHEMICAL EQUILIBRIUM. Introduction to Chemical Equilibrium  Focus has always been placed upon chemical reactions which are proceeding in one direction.
System strives for minimum Free Energy. aA + bB cC + dD G0G0 rxn d  G 0 (D) f c  G 0 (C) f = [+] - b  G 0 (B) f a  G 0 (A) f [+] G0G0 rxn n 
Copyright©2004 by Houghton Mifflin Company. All rights reserved. 1 Introductory Chemistry: A Foundation FIFTH EDITION by Steven S. Zumdahl University of.
Chapter 13 Chemical Equilibrium The state where the concentrations of all reactants and products remain constant with time. On the molecular level, there.
1 Chemical Equilibrium: “ Big K” kinetics: rate constant “little k” kinetics “little k” told us how fast a reaction proceeds and is used to indicate a.
CH 13 Chemical Equilibrium. The Concept of Equilibrium Chemical equilibrium occurs when a reaction and its reverse reaction proceed at the same rate.
Chapter 13.  Equilibrium is not static. It is a highly dynamic state.  Macro level reaction appears to have stopped  Molecular level frantic activity.
8–1 John A. Schreifels Chemistry 212 Chapter 15-1 Chapter 15 Chemical Equilibrium.
By Steven S. Zumdahl & Don J. DeCoste University of Illinois Introductory Chemistry: A Foundation, 6 th Ed. Introductory Chemistry, 6 th Ed. Basic Chemistry,
Mixing in water Solutions dominated by water (1 L=55.51 moles H 2 O) a A =k H X A where K H is Henry’s Law coefficient – where is this valid? Low concentration.
Calculating Equilibrium Composition  Example  Cl 2 (g) → 2Cl (g)
Chemical-Reaction Equilibra ERT 206: Thermodynamics Miss Anis Atikah Ahmad Tel: anis
Chapter 16 Chemical Equilibrium.
CHAPTER 13 AP CHEMISTRY. CHEMICAL EQUILIBRIUM Concentration of all reactants and products cease to change Concentration of all reactants and products.
Enthalpy, Entropy, and Spontaneity Explained. Review of Enthalpy Change.
Chemical Equilibrium. n In systems that are in equilibrium, reverse processes are happening at the same time and at the same rate. n Rate forward = Rate.
Chapter 15 Chemical Equilibrium
Chapter 15 Equilibrium. Equilibrium N H 2  2 NH 3 N H 2  2 NH 3 Both reactions occur, Both reactions occur, Closed system Closed system.
Chapter 17 Equilibrium Chemistry B2A. Collision A + B  C Effective collision: a collision that results in a chemical reaction. A B C C.
Chapter 14: Chemical Equilibrium CHE 124: General Chemistry II Dr. Jerome Williams, Ph.D. Saint Leo University.
Chemical Equilibrium Q, K, and Calculations Chapter 16.
Thermodynamics Chemical-reaction Equilibria
Chemical Equilibrium. aA + bB ↔ cC + dD a, b, c and d are the stoichiometric coefficients for the reacting molecules. A, B, C and D are the reacting molecules.
Chapter 15; CHEMICAL EQUILIBRIUM 14 | 1 Describing Chemical Equilibrium Chemical Equilibrium—A Dynamic Equilibrium The Equilibrium Constant Heterogeneous.
Chapter 15: Chemical Equilibrium By: Ms. Buroker.
Chapter 13 Chemical Equilibrium Reversible Reactions REACTANTS react to form products. PRODUCTS then react to form reactants. BOTH reactions occur: forward.
Pacific school of Engineering Sub: C.E.T-2 Topic: Chemical reaction Equilibrium Mayani Chintak Sudani Dhrutik Bhikadiya Hardik.
Chemical Equilibrium. Unit Objectives  Define chemical equilibrium.  Explain the nature of the equilibrium constant.  Write chemical equilibrium expressions.
 Chemical Equilibrium occurs when opposing reactions are proceeding at equal rates.  When the forward reaction equals the reverse reaction.  It results.
Text pages Pressure, Equilibrium and Gibbs Free Energy Dependence of Free Energy on Pressure The entropy of 1 mole of gas in a 20.0 L container.
Chapter Fourteen Chemical Equilibrium.
Lets Review!!!: Chemical Equilibrium
Presentation transcript:

1 Chapter 6 Chemical Equilibrium

2 Spontaneous Chemical Reactions The Gibbs Energy Minimum Consider the simple equilibrium reaction: A B The equilibrium concentrations (or pressures) will be at the extent of reaction at which the Gibbs function of the system will be at a minimum. The equilibrium may lie: (1)Close to pure A: The reaction "doesn't go" (2)Close to pure B: The reaction "proceeds to completion" (3)At a point where there are finite concentrations of both A and B (equilbrium) Extent of Reaction ( ): This parameter is a measure of how far the reaction has proceeded from reactants towards products. = 0: Reactants only = 1: Products only

3 The change in may be related to the change in the number of moles of 'reactants and products. For the simple reaction: A B dn A = -d and dn B = +d or n A = - and n B = + Let's say the stoichiometry is different; i.e. A 2 B In this case: dn A = -d and dn B = +2d or n A = - and n B = + 2 Back to: A B We showed in Chapter 3 that for a system with two species, the infinitesimal change, dG is given by: For processes at constant T and p (e.g. many reactions), this reduces to:

4 For the simple reaction: A B dn A = -d and dn B = +d From this, one gets: Implications: Note: r G is a function of the mixture's composition (relative amounts of A and B)

5 If: r G < 0, the forward reaction is spontaneous r G > 0, the reverse reaction is spontaneous r G = 0, the reaction is at equilibrium The reaction is exergonic The reaction is endergonic

6 The Description of Equilibrium Let's first reconsider the simple equilibrium, A B, and assume that A and B are both Perfect Gases. We learned in Chapter 5 that for a mixture of Perfect Gases, the chemical potential of each component is given by: p o is the reference state, 1 bar We then have: Therefore: where and

7 Therefore: where and Equilibrium At equilibrium, r G = 0. The equilibrium constant is: We have developed the expression, for the simplest of equilibria. However, as we'll see, one gets the same expression for more complex equilibria.

8 The General Case Here, we will: (1) Use activities, rather than pressures (2) Consider a more general reaction aA + bB cC + dD A = A o + RTln(a A ) B = B o + RTln(a B ) r G = {c C + d D } - {a A + b B } r G = r G o + RTln(Q) C = C o + RTln(a C ) D = D o + RTln(a D ) r G o = {c C o + d D o } - {a A o + b B o } It can be shown that:

9 r G o = {c C o + d D o } - {a A o + b B o } Standard Gibbs Energy Change ( r G o ) r G o is the Gibbs Energy change when reactants and products are in the standard state. aA + bB cC + dD Gas Phase: 1 bar in the standard state Solution: 1 M aA + bB cC + dD r G = r G o + RTln(Q)

10 aA + bB cC + dD r G = r G o + RTln(Q) Reaction Quotient (Q) Gas Phase Solution Ref. State: P o = 1 bar Ref. State: c o = 1 M

11 aA + bB cC + dD r G = r G o + RTln(Q) Reaction Quotient (Q) Standard State: All a J =1 Q = 1 r G = r G o Reactants Only:Q = 0 r G = - a C = 0 a D = 0 Products Only: Q = + r G = + a A = 0 a B = 0

12 Text Notation aA + bB cC + dD r G = r G o + RTln(Q) Reaction: J is a chemical component (rct. or prod.) j is the stoichiometric coefficient j < 0 for reactant j > 0 for product Gibbs Energy: where Equilibrium: where

13 An Illustrative Example r G = r G o + RTln(Q) r G o = J T = 298 K A(g) B(g) + C(g) Consider: Calculation of K

14 Standard State: P A =1 bar P B =P C =1 bar Q = 1 r G = r G o = J Reactant Only: Q = 0 r G = - Products Only: Q = + r G = + P A =2 bar P B =P C =0 Reaction proceeds to Left Reaction proceeds to Right P A = 0 P B =P C =2 bar Reaction proceeds to Left Reactants and Products: P A =1.5 bar P B =P C =0.5 bar Q = r G = 0 Reaction at Equilibrium r G = r G o + RTln(Q) r G under various conditions

15 Some Equilibrium Calculation Examples 2 NO 2 (g) N 2 O 4 (g) (a)The Gibbs Energies of formation of NO 2 and N 2 O 4 are 51.3 kJ/mol and 97.9 kJ/mol, respectively. Calculate the equilibrium constant, K, at 25 o C G o = -4.7 kJ = J K = 6.7 (b)If the initial pressures of NO 2 and N 2 O 4 are both 10 4 Pa (= 0.1 bar), calculate the direction of spontaneity under these conditions. G = J J = J: Spontaneous to Left (c) Calculate the pressures of NO 2 and N 2 O 4 at equilibrium. 26.8x x = 0 x = p(NO 2 ) = p(N2O4) = Check: K = 6.70

16 Some Equilibrium Calculation Examples H 2 O(g) H 2 (g) + (1/2) O 2 (g) (a) G o for the dissociation of water vapor at 2300 K is kJ/mol Calculate K for this reaction. (b)The fraction dissociation,, is defined as the fraction of molecules which which have dissociated at equilibrium; i.e. = 1 - n eq /n, where n is the initial amount of reactant prior to dissociation, and n eq is the amount of reactant present at equilibrium. Calculate for H 2 O gas at equilibrium at 2300 k and a total pressure of 1 bar. You may assume that << 1. K = 2.07x10 -3

17 Some Equilibrium Calculation Examples H 2 O(g) H 2 (g) + (1/2) O 2 (g) (b)The fraction dissociation,, is defined as the fraction of molecules which have dissociated at equilibrium; i.e. = 1 - n eq /n, where n is the initial amount of reactant prior to dissociation, and n eq is the amount of reactant present at equilibrium. Calculate for H 2 O gas at equilibrium at 2300 k and a total pressure of 1 bar. You may assume that << 1. K = 2.07x10-3 Strategy: 1. Express number of moles of reactants and products in terms of. 2. Determine mole fraction of each component. 3. Use Dalton's law to determine partial pressures of the components. 4. Calculate from the equilibrium expression. =

18 Some Equilibrium Calculation Examples A(g) 2 B(g) The equilibrium constant for the gas phase dissociation above is: K = 2.0 If one introduces pure A(g) into a vessel, calculate the fraction dissociation,, and the partial pressures of A(g) and B(g) at a total pressure of 5. bar. Note: You may NOT assume that << 1. Strategy: 1. Express number of moles of reactants and products in terms of. 2. Determine mole fraction of each component. 3. Use Dalton's law to determine partial pressures of the components. 4. Calculate from the equilibrium expression.

19 Some Equilibrium Calculation Examples A(g) 2 B(g) The equilibrium constant for the gas phase dissociation above is: K = 2.0 If one introduces pure A(g) into a vessel, calculate the fraction dissociation,, and the partial pressures of A(g) and B(g) at a total pressure of 5. bar. Note: You may NOT assume that << 1.

20 Some Equilibrium Calculation Examples A(g) B(g) + C(g) HOMEWORK: The equilibrium constant for the gas phase dissociation above is: K = 2.0 If one introduces pure A(g) into a vessel, calculate the fraction dissociation,, and the partial pressures of A(g), B(g) and C(g) at a total pressure of 5. bar. Note: You may NOT assume that << 1.

21 Some Equilibrium Calculation Examples For the above gas phase reaction at 25 o C, it is found that if one mixes 1.0 mol A, 4.0 mol B and 3.0 mol D in a vessel, and the reaction is allowed to come to equilibrium, the mixture contains 0.60 mol C at a total pressure of 2.0 bar. Calculate the following quantities for this equilibrium: (A) the mole fraction of each species n(A) = 0.40 mol x(A) = n(B) = 2.20 mol x(B) = n(C) = 0.60 mol x(C) = n(D) = 4.20 mol x(D) = n(tot) = 7.40 mol A(g) + 3 B(g) C(g) + 2 D(g) Example: (Similar to Text Exer. 6.8a). Consider the gas phase equilibrium:

22 Some Equilibrium Calculation Examples For the above gas phase reaction at 25 o C, it is found that if one mixes 1.0 mol A, 4.0 mol B and 3.0 mol D in a vessel, and the reaction is allowed to come to equilibrium, the mixture contains 0.60 mol C at a total pressure of 2.0 bar. Calculate the following quantities for this equilibrium: A(g) + 3 B(g) C(g) + 2 D(g) Example: (Similar to Text Exer. 6.8a). Consider the gas phase equilibrium: (B) the equilibrium constant, K x(A) = x(B) = x(C) = x(D) = p(A) = x(A) p = bar p(B) = x(B) p = bar p(C) = x(C) p = bar p(D) = x(D) p = bar

23 Some Equilibrium Calculation Examples For the above gas phase reaction at 25 o C, it is found that if one mixes 1.0 mol A, 4.0 mol B and 3.0 mol D in a vessel, and the reaction is allowed to come to equilibrium, the mixture contains 0.60 mol C at a total pressure of 2.0 bar. Calculate the following quantities for this equilibrium: A(g) + 3 B(g) C(g) + 2 D(g) Example: (Similar to Text Exer. 6.8a). Consider the gas phase equilibrium: (C) r G o K = 9.24

24 The Response of Equilibrium to Pressure Condensed Phase Reactions: The external pressure has no effect. Gas Phase Reactions: Upon increase in the external pressure, the equilibrium will shift in the direction of fewer moles of gas. However, the equilibrium constant is unchanged!! In the slides below, we will: 1. Present a quantitative treatment of the effect of pressure on amount of reactants and products. 2. Present some qualitative examples The above trend for gas phase reactions is an example of LeChatelier's Principle.

25 The Response of Equilibrium to Pressure Quantitative Treatment A(g) 2 B(g) Among the previous examples, we analyzed the dissociation equilibrium: We found that the equilibrium constant is a function of (a)the fraction dissociation, (b)the total pressure, p This equation was solved for :

26 A(g) 2 B(g) Let's apply this to the gas phase equilibrium, N 2 O 4 (g) 2 NO 2 (g) K = at 25 o C p 0.1 bar Notice that the equilibrium moves to the left (i.e. the fraction dissociation decreases) with an increase in the total pressure. This is consistent with LeChatelier's Principle.

27 A(g) 2 B(g) Different K values The graph above shows that the same trend holds for different values of the equilibrium constant, K.

28 The Response of Equilibrium to Pressure Qualitative Examples Consider the equilibrium: N 2 (g) + 3 H 2 (g) 2 NH 3 (g) What happens to the equilibrium when: (a) The volume is decreased: (b) NO 2 (g) is added at constant volume: (c) NO 2 (g) is added at constant total pressure: The equlibrium is shifted to the right There is no effect on the equilibrium The equlibrium is shifted to the left Note: In all cases, the equilibrium constant, K, is unchanged

29 The Response of Equilibrium to Pressure Qualitative Examples Consider the equilibrium: H 2 (g) + Br 2 (g) 2 HBr(g) What happens to the equilibrium when: (a) The volume is decreased: (b) Cl 2 (g) is added at constant volume: (c) Cl 2 (g) is added at constant total pressure: There is no effect on the equilibrum There is no effect on the equilibrium Note: In all cases, the equilibrium constant, K, is unchanged

30 The Response of Equilibrium to Pressure Qualitative Examples Consider the equilibrium: H 2 (g) + I 2 (s) 2 HI(g) What happens to the equilibrium when: (a) The volume is decreased: (b) Cl 2 (g) is added at constant volume: (c) Cl 2 (g) is added at constant total pressure: The equilibrium is shifted to the left There is no effect on the equilibrium The equilibrium is shifted to the right Note: In all cases, the equilibrium constant, K, is unchanged

31 The Response of Equilibrium to Temperature Le Chateliers Principle The equilibrium constant, K, and hence the ratio of products to reactants, shifts in the endothermic direction as the as the temperature is increased N 2 O 4 (g) 2 NO 2 (g) r H o = kJ With rising temperature, K increases and the ratio of NO 2 to N 2 O 4 increases; i.e. equilibrium shifts towards right. N 2 (g) + 3 H 2 (g) 2 NH 3 (g) r H o = kJ With rising temperature, K decreases and the ratio of NH 3 to N 2 /H 2 decreases; i.e. equilibrium shifts towards left. Qualitative Considerations

32 The Response of Equilibrium to Temperature Quantitative Treatment: The van't Hoff Equation In Chapter 3, when discussing the effect of temperature on the Gibbs Energy, we derived the formula: We also have: Gibbs Helmholtz Equation van't Hoff Equation Therefore: Which yields:

33 Alternate form of the van't Hoff Equation Consider that: Now: Therefore: or: Alternate form

34 ln(K) 1/T Slope = - r H o /R The second form of the van't Hoff equation illustrates that if one plots ln(K) vs. 1/T, the tangent at a given point can be used to calculate r H o at that temperature.

35 Application: Calculation of K at a second temperature For a given reaction, A B, the equilibrium constant is 0.05 at 25 o C. r H o for the reaction is given by: a = 125 kJ/mol and b = 2x10 4 kJ-K/mol Calculate the value of the equilibrium constant at 75 o C K = 2600 at 75 o C

36 HOMEWORK For a given reaction, C D, the equilibrium constant is 200. at 25 o C. r H o for the reaction is given by: a = -80 kJ/mol and b = 0.12 kJ/mol-K Calculate the value of the equilibrium constant at 75 o C K = 18 at 75 o C

37 Integrated van't Hoff Equation with constant r H o This integrates to: Identification of the Integration Constant, C In a plot of lnK vs. 1/T, (a) the slope is - r H/R (b) the intercept is + r S/R

38 If one measures the equilibrium constant at two temperatures, K 1 at T 1 and K 2 at T 2, the data can be used to determine r H and r S and Subtraction of the second equation from the first equation (to eliminate r S) yields: This equation can be used to determine r H and then either of the first two equations can be used to calculate r S.

39 Application: The Dissociation of N 2 O 4 (g) For the equilibrium reaction, N 2 O 4 (g) 2 NO 2 (g), the equilibrium constant is at 0 o C and at 100 o C. (a) Calculate r H and r S for this reaction. (b) Calculate the equilibrium constant at 25 o C (c)Calculate the temperature, in o C, at which the equilibrium constant is K = 100. r H = kJ/mol r S = J/mol-K K = T = 143 o C

40 Equilibrium Electrochemistry Redox Reactions and Half-Reactions Oxidation-Reduction (Redox) reactions are important in many areas of Chemistry. One particularly useful application is to harness spontaneous redox reactions to provide electric energy in an electrochemical cell. Consider the reaction: Zn(s) + Cu 2+ (aq) Zn 2+ (aq)+ Cu(s) This can be split into: Zn(s) Zn 2+ (aq)+ 2 e - : Oxidation Half-Reaction Cu 2+ (aq) + 2 e - Cu(s): Reduction Half-Reaction A useful pneumonic is: OIL: Oxidation Is Loss (of electrons) RIG: Reduction Is Gain (of electrons)

41 e-e- e-e- Oxidation: Zn Zn e - Reduction: Cu e - Cu K 2 SO 4 "Salt Bridge": Flow of K + and SO 4 2- into the half-cells keeps the two halves electrically neutral. Cu 2+ (aq) + Zn(s) Cu(s) + Zn 2+ (aq) Electrochemical Cell

42 Anode Oxidation Negative (-) Charge Anions flow towards anode Electrons leave anode Mneumonic: Both A and O are vowels Cathode Reduction Positive (+) Charge Cations flow towards cathode Electrons enter cathode Mneumonic: Both C and R are consonants Zn Zn e - Cu e - Cu

43 Zn(s) | Zn 2+ (aq) || Cu 2+ (aq) | Cu (s) Current flows from anode to cathode. | = phase boundary || = salt bridge Details (e.g. concentration) are listed after each species. anode cell cathode cell Electrochemical Cells: Compact Notation Current Flow Write the half-cell reactions and balanced redox equation for the reaction characterized by: Cu(s)|Cu 2+ (aq)||Fe 3+ (aq)|Fe(s) Anode (Oxid): Cu(s) Cu 2+ (aq) + 2 e - Cathode (Red): Fe 3+ (aq) + 3 e - Fe(s) Overall Rxn: 3 Cu(s) + 2 Fe 3+ (aq) 3 Cu 2+ (aq) + 2 Fe(s)

44 Standard Cell Potential The voltage of an electrochemical cell varies with the conditions (i.e. state of reactants and products, concentrations, etc.) The cell potential has a standard voltage (E o or E o cell ) if: Solute concentrations are 1 M Gases have a pressure of 1 bar Solids are pure Sign of the Cell Potential (by convention) If a reaction is Spontaneous, E o cell > 0 If a reaction is Non-Spontaneous, E o cell < 0 Note: Absolute Cell Potentials of a half-cell cannot be measured. They are measured relative to a standard, the Standard Hydrogen Electrode The Cell Potential

45 Standard Hydrogen Electrode Hydrogen gas at 1 bar, H 2 (g, 1 bar), is bubbled over a platinum electrode immersed in 1 M aqueous acid solution. The cell potential for this half-reaction, is defined as 0 (for either oxidation or reduction). Reduction: 2 H 3 O + (aq, 1 M) + 2 e - H 2 (g, 1 bar) + 2 H 2 O(l) E o (red) = 0 Oxidation: H 2 (g, 1 bar) + 2 H 2 O(l) 2 H 3 O + (aq, 1 M) + 2 e - E o (oxid) = 0 The reduction potentials of other half-cell reactions can be determined with this convention, by measuring the voltage of a cell containing the standard hydrogen electrode (or indirectly) Using the above convention, extensive tables of reduction potentials for many species have been derived. A partial list is given on the next slide.

46 Reduction Half-Cell Potentials (Partial List) Easier to reduce than H 3 O + Harder to reduce than H 3 O + F 2 (g) + 2 e - 2 F - (aq) H 2 O 2 (aq) + 2 H 3 O + 2 e - 4 H 2 O( l )+1.77 MnO 4 - (aq)+8 H 3 O e - Mn 2+ (aq) + 12 H 2 O( l )+1.51 C l 2 (g) + 2 e - 2 C l - (aq) Br 2 (g) + 2 e - 2 Br - (aq) Ag + (aq) + e - Ag(s) Cu 2+ (aq) + 2 e - Cu(s) H 3 O + (aq) + 2 e - H 2 (g) + 2 H 2 O( l ) 0.00 Ni 2+ (aq) + 2 e - Ni(s) Fe 2+ (aq) + 2 e - Fe(s) Zn 2+ (aq) + 2 e - Zn(s)-0.76 A l 3+ (aq) + 3 e - A l (s)-1.66 Li + (aq) + e - Li(s)-3.05

47 Consider the reaction: Cu 2+ + Zn Cu + Zn 2+ (I am leaving out the "aq" and "s" for convenience) The two half-cell reactions are: Reduction (Cathode): Cu e - Cu E o Red (Cu 2+ )= V Oxidation (Anode): Zn Zn e - E o Oxid (Zn) = -E o Red (Zn 2+ ) = V Therefore, the overall cell potential is: E o cell = E o Red (Cu 2+ ) + E o Oxid (Zn) = = V Equivalently, one could write: E o cell = E o Red (Cu 2+ ) - E o Red (Zn 2+ ) = (-0.76) = V Because E o cell > 0, this reaction is spontaneous. Using Standard Reduction Potentials

48 In general, one can calculate E o cell as either: E o cell = E o Red (Cathode) + E o Oxid (Anode) or E o cell = E o Red (Cathode) - E o Red (Anode) The two half-cell reactions are: Reduction (Cathode): Cu e - Cu E o Red (Cu 2+ )= V Oxidation (Anode): Zn Zn e - E o Oxid (Zn) = -E o Red (Zn 2+ ) = V Therefore, the overall cell potential is: E o cell = E o Red (Cu 2+ ) + E o Oxid (Zn) = = V Equivalently, one could write: E o cell = E o Red (Cu 2+ ) - E o Red (Zn 2+ ) = (-0.76) = V

49 The standard reduction potentials of Sn 2+ and Al 3+ are V and V, respectively. Write the balanced redox equation and determine the cell potential for the reaction, Al(s)|Al 3+ (aq)||Sn 2+ (aq)|Sn(s) 2 Al(s) + 3 Sn 2+ (aq) 2 Al 3+ (aq) + 3 Sn(s) E o cell = V Note that even though the Al half-reaction was multiplied by 2 and the Sn 2+ reaction was multiplied by 3, the cell potentials were NOT multiplied by any factor. Review Example How many electrons are transfered in this reaction? 6 electrons

50 The Nernst Equation It can be shown that the Gibbs Energy change, r G, for a reaction is related to the cell potential, E cell, by the equation: r G = -nFE cell F is Faraday's Constant. This is the charge, in Coulombs (C) of one mole of electrons. F = 96,485 C/mol 96,500 C/mol n is the number of electrons transfered in the reaction.* * The text uses the symbol,, to represent the number of transfered electrons.

51 We learned earlier in this chapter that the Gibbs Energy change for a reaction depends upon the reactant and product concentrations (or pressures for gases) and can be determined from the equation: r G o is the Standard Gibbs Energy change (concentrations = 1 M), and Q is the reaction quotient. It is straightforward to use the above equation, with the relations r G = -nFE cell and r G o = -nFE o cell to derive the following relationship between cell potential and concentrations: which yields: Nernst Equation

52 Nernst Equation Alternate Form In classical Analytical texts, it is common to rewrite the Nernst Equation at the specific temperature of 25 o C (= K) in terms of base 10 logarithms [ln(x) = log(x)]. In this case, the equation is commonly written: I'll use the more general form (which allows for variable temperature).

53 Example The standard reduction potentials of Al 3+ and Zn 2+ are V and V, respectively. Consider the electrochemical cell, Al(s)|Al 3+ (5.0 M)||Zn 2+ (0.02 M)|Zn(s) (A)Write the oxidation and reduction half-reactions + the balanced overall reaction. Oxidation: Al(s) Al 3+ (5.0 M) + 3 e - Reduction: Zn 2+ (0.02 M) + 2 e - Zn(s) Overall: 3 Zn 2+ (0.02 M) + 2 Al(s) 3 Zn(s) + 2 Al 3+ (5.0 M) (B) Determine the Standard Cell Potential, E o cell.

54 Example The standard reduction potentials of Al 3+ and Zn 2+ are V and V, respectively. Consider the electrochemical cell, Al(s)|Al 3+ (5.0 M)||Zn 2+ (0.02 M)|Zn(s) Overall: 3 Zn 2+ (0.02 M) + 2 Al(s) 3 Zn(s) + 2 Al 3+ (5.0 M) (C) Determine the Cell Potential at 25 o C under the given conditions E o cell = 0.90 V R = 8.31 J/mol-K = 8.31 C-V/mol-K T = 298 K F = 96,500 C/mol Note: You get the same answer if you use the alternate form of the Nernst Equation:

55 Cell Potential and the Equilibrium Constant One interesting application of electrochemical cell potentials is to calculate the equilibrium constant for a reaction. Remember from earlier in the chapter that, at equlibrium: Because the reaction Gibbs Energy change is related to the cell potential, r G = -nFE cell, one also has that, at equilibrium:

56 Example Determine the equilibrium constant, at 25 o C for the reaction: Fe(s) + Cd 2+ (aq) Fe 2+ (aq) + Cd(s) R = 8.31 J/mol-K = 8.31 C-V/mol-K T = 298 K F = 96,500 C/mol The standard reduction potentials of Fe 2+ and Cd 2+ are V and V, respectively.

57 The Determination of Thermodynamic Functions Gibbs Energy Change ( r G o ) One can use standard cell potentials to calculate the standard Gibbs Energy change for a reaction from the formula: r G o = -nFE o cell As we see below, the dependence of cell potential on temperature can be used to determine the Entropy change, r S o, and Enthalpy change, r H o, of the reaction. Entropy Change ( r S o ) Remember that the total differential for dG is: This leads to:

58 Entropy Change ( r S o ) This leads to: For a reaction under standard conditions, one can write r G o = G o (Prod) - G o (Rct) and r S o = S o (Prod) - S o (Rct) Thus, for a reaction, the above equation can be rewritten as: Therefore, r S o for a reaction can be determined from the measured temperature dependence of the standard electrochemical cell potential.

59 Enthalpy Change ( r H o ) We have already seen that the Gibbs Energy change and the Entropy change for a reaction are related to the electrochemical cell potential by: and We recall from Chapter 3 that the relation between the Enthalpy, Entropy and Gibbs Energy changes for a reaction is: which yields: If we wish, we can plug in the expressions for r G o and r S o to get: Alternately, we can first calculate r G o and r S o and then insert the numerical values into the equation:

60 Consider the electrochemical cell reaction: AgBr(s) + ½ H 2 (g) Ag(s) + HBr(aq) The standard cell potential is temperature dependent and is given by: Example (similar to Text Example 6.5) a = V, b = V-K, T = temperature in K n = 1 (A) r G o Calculate r G o, r S o and r H o for this reaction at 25 o C = 298 K F = 96,500 C/mol 1 C-V = 1 J

61 Consider the electrochemical cell reaction: AgBr(s) + ½ H 2 (g) Ag(s) + HBr(aq) The standard cell potential is temperature dependent and is given by: Example (similar to Text Example 6.5) a = V, b = V-K, T = temperature in K n = 1 (B) r S o Calculate r G o, r S o and r H o for this reaction at 25 o C = 298 K F = 96,500 C/mol 1 C-V = 1 J

62 Consider the electrochemical cell reaction: AgBr(s) + ½ H 2 (g) Ag(s) + HBr(aq) The standard cell potential is temperature dependent and is given by: Example (similar to Text Example 6.5) a = V, b = V-K, T = temperature in K n = 1 (C) r H o Calculate r G o, r S o and r H o for this reaction at 25 o C = 298 K F = 96,500 C/mol 1 C-V = 1 J r G o = J/mol r S o = J/mol-K