Dust Enrichment by Supernova Explosions

Slides:



Advertisements
Similar presentations
Non-steady-state dust formation in the ejecta of Type Ia supernovae 2013/08/06 Takaya Nozawa (Kavli IPMU, University of Tokyo) Collaborators: Takashi Kozasa.
Advertisements

Ia 型超新星爆発時に おけるダスト形成 野沢 貴也 東京大学数物連携宇宙研究機構(IPMU) 共同研究者 前田啓一 (IPMU), 野本憲一 (IPMU/ 東大 ), 小笹隆司 ( 北大 )
Multi-wavelength Observations of Composite Supernova Remnants Collaborators: Patrick Slane (CfA) Eli Dwek (GSFC) George Sonneborn (GSFC) Richard Arendt.
Dust emission in SNR 1987A and high-z dust observations Takaya Nozawa (Kavli IPMU) 2013/10/24 〇 Contents of this talk - Introduction - Our ALMA proposals.
Composition and Origin of Dust Probed by IR Spectra of SNRs ( 超新星残骸の赤外分光観測から探るダストの組成と起源 ) Takaya Nozawa IPMU (Institute for the Physics and Mathematics.
Current understandings on dust formation in supernovae Takaya Nozawa (NAOJ, Division of theoretical astronomy) 2014/06/25 Main collaborators: Masaomi Tanaka.
Dust Formation in Various Types of Supernovae Takaya Nozawa (IPMU, University of Tokyo) T. Kozasa (Hokkaido Univ.) K. Nomoto (IPMU) K. Maeda (IPMU) H.
Detecting Cool Dust in SNRs in LMC and SMC with ALMA Takaya Nozawa (Kavli IPMU) and Masaomi Tanaka (NAOJ) 2012/6/11 Targets ・ SN 1987A: our proposal for.
Cas A 超新星残骸中の ダストの進化と熱放射 野沢 貴也 東京大学数物連携宇宙研究機構(IPMU) 共同研究者 小笹 隆司 ( 北大 ), 冨永望 ( 国立天文台 ), 前田啓一 (IPMU), 梅田秀之 ( 東大 ), 野本憲一 (IPMU/ 東大 )
Dust Production Factories in the Early Universe Takaya Nozawa ( National Astronomical Observatory of Japan ) 2015/05/25 - Formation of dust in very massive.
超新星放出ガス中でのダスト形 成と衝撃波中でのダスト破壊 野沢 貴也( Takaya Nozawa ) 東京大学 国際高等研究所 カブリ数物連携宇宙研究機構( Kavli IPMU ) 2012/09/05 Collaborators; T. Kozasa, A. Habe (Hokkaido University)
Supernovae as resources of interstellar dust Takaya Nozawa (IPMU, University of Tokyo) 2011/05/06 Collaborators; T. Kozasa, A. Habe (Hokkaido University)
Formation of Dust in Various Types of Supernovae Takaya Nozawa IPMU (Institute for the Physics and Mathematics of the Universe, Univ. of Tokyo) Collaborators.
Detecting Cool Dust in Type Ia Supernova Remnant (ranked as priority grade B for ALMA Cycle2) Takaya Nozawa (NAOJ, 理論研究部 ) and Masaomi Tanaka.
Dust Properties in Metal-Poor Environments Observed by AKARI Hiroyuki Hirashita Hiroyuki Hirashita (ASIAA, Taiwan) H. Kaneda (ISAS), T. Onaka (Univ. Tokyo),
Dust production in a variety of types of supernovae Takaya Nozawa (NAOJ, Division of theoretical astronomy) 2014/08/07 Main collaborators: Keiichi Maeda.
Revealing the mass of dust formed in the ejecta of SNe with ALMA ALMA で探る超新星爆発時におけるダスト形成量 Takaya Nozawa (IPMU, University of Tokyo) 2011/1/31 Collaborators;
Nature of Dust in the early universe Takaya Nozawa IPMU (Institute for the Physics and Mathematics of the Universe, Univ. of Tokyo) Collaborators T. Kozasa,
Formation of Dust in Supernovae and Its Ejection into the ISM Takaya Nozawa (IPMU, Univ. of Tokyo) Collaborators; T. Kozasa (Hokkaido Univ.), N. Tominaga.
Probing Dust Formation Process in SN 1987A with ALMA Takaya Nozawa (Kavli IPMU) and Masaomi Tanaka (NAOJ) 2013/10/22.
Evolution of Newly Formed Dust in Population III Supernova Remnants and Its Impact on the Elemental Composition of Population II.5 Stars Takaya Nozawa.
Formation and evolution of dust in Type IIb SN: Application to Cas A Takaya Nozawa (IPMU, Univ. of Tokyo) Collaborators; T. Kozasa (Hokkaido Univ.), N.
On Dust in the Early Universe Takaya Nozawa (IPMU, University of Tokyo) 2010/07/29 Contents: 1. Observations of dust at high-z 2. Formation of dust in.
Physical Conditions of Supernova Ejecta Probed with the Sizes of Presolar Al 2 O 3 Grains - 超新星起源プレソーラー Al 2 O 3 粒子の形成環境 - (Nozawa, Wakita, Hasegawa, Kozasa,
(National Astronomical Observatory of Japan)
Cosmic Dust Enrichment and Dust Properties Investigated by ALMA Hiroyuki Hirashita ( 平下 博之 ) (ASIAA, Taiwan)
Evolution of dust size distribution and extinction curves in galaxies Takaya Nozawa (National Astronomical Observatory of Japan) 2014/05/21 C ollaborators:
Formation and evolution of dust in hydrogen-poor supernovae Takaya Nozawa (IPMU, Univ. of Tokyo) Collaborators; T. Kozasa (Hokkaido Univ.), N. Tominaga.
Unburned carbon in SNe Ia as viewed from (non-)formation of C grains Takaya Nozawa (IPMU, University of Tokyo) 2011/04/13 Condensation efficiency of carbon.
Supply of dust from supernovae: Theory vs. Observation (超新星爆発によるダストの供給: 理論 vs. 観 測) Takaya Nozawa (IPMU, University of Tokyo) 2011/07/20 Collaborators:
Dust formation theory in astronomical environments
submitted to ApJ Letter Takaya Nozawa (Kavli IPMU)
A modest overview of HIGH-REDSHIFT DUST Simona Gallerani
Core-collapse supernovae as dust producers: what Spitzer is telling us
SN 1987A: The Formation & Evolution of Dust in a Supernova Explosion
NAOJ, Division of theoretical astronomy
Mid-infrared Observations of Aged Dusty Supernovae
National Astronomical Observatory of Japan
Kavli IPMU, University of Tokyo
2014/09/13 高赤方偏移クェーサー母銀河の 星間ダスト進化と減光曲線 (Evolution of interstellar dust and extinction curve in the host galaxies of high-z quasars) 野沢 貴也 (Takaya Nozawa)
Supernovae as sources of interstellar dust
Origin and Nature of Dust Grains in the Early Universe
(IPMU, University of Tokyo)
Consensus and issues on dust formation in supernovae
IIb型超新星爆発時のダスト形成と その放出過程
Formation of Dust in the Ejecta of Type Ia Supernovae
東京大学数物連携宇宙研究機構(IPMU)
2010/12/16 Properties of interstellar and circumstellar dust as probed by mid-IR spectroscopy of supernova remnants (超新星残骸の中間赤外分光から探る星間・星周ダスト) Takaya.
Dust formation theory in astronomical environments
低金属量銀河の星形成モード (Nagoya University) L. K. Hunt (Firenze)
Supernovae as sources of interstellar dust
Dust in supernovae Takaya Nozawa
ダスト形成から探る超新星爆発 Supernovae probed by dust formation
Formation of Dust Grains by Supernova Explosion
Dust Synthesis in Supernovae and Reprocessing in Supernova Remnants
Supernovae as sources of dust in the early universe
On the non-steady-state nucleation rate
Formation of Dust in the Ejecta of Type Ia Supernovae
Approach to Nucleation in Astronomical Environments
Kavli IPMU, University of Tokyo
Missing-Dust Problem in SNe: Approach from extremely young SNRs
Takaya Nozawa (IPMU, University of Tokyo)
Supernovae as Sources of Interstellar Dust
(National Astronomical Observatory of Japan)
Formation of supernova-origin presolar SiC grains
爆燃Ia型超新星爆発時に おけるダスト形成
Spallation l-process (spallation):
Formation of dust and molecules in supernovae
Formation and evolution of dust in hydrogen-poor supernovae
(National Astronomical Observatory of Japan)
Presentation transcript:

Dust Enrichment by Supernova Explosions Takaya Nozawa (IPMU, University of Tokyo) Collaborators: T. Kozasa, A. Habe (Hokkaido Univ.), K. Maeda, K. Nomoto, M. Tanaka (IPMU), N. Tominaga (Konan Univ.), H. Umeda (Univ. of Tokyo) 2011/08/10

How does the cosmic dust evolve throughout the cosmic age? When and how did the universe begin to be enriched with dust?

1-1. Discovery of huge amounts of dust at z > 5 There has been clear evidence for the presence of a large amount of dust (>108 Msun) in quasars at z > 5 (t < 1.2 Gyr) SED of QSO at z=6.4 What is the origin of massive dust?  ・ core-collapse SNe (Type II SNe) ➔ ~0.1-1 Msun per SN is needed (Maiolino+’06; Dwek+’07; Gall+’11)  ・ AGB stars + SNe (Valiante+’09; Dwek & Cherchneff’11) ➔ 0.01-0.05 Msun per AGB stars  ・ Grain growth in ISM + AGB stars + SNe (Draine’09; Michalowski+’10; Pipino+’11; Asano-san’ talk) LIR = 10^13 Lsun Leipski+’10, A&A, 518, L34

1-2. Dust formation and destruction in SNe Supernovae may be sources of the first dust ・ Theoretical studies on dust formation in the SN ejecta (Todini & Ferrara’01; Nozawa+’03; Schneider+’04; Bianchi & Schneider+’07; Cherchneff & Dwek’09, ’10) - Mdust=0.1-1 Msun in (primordial) Type II-P SNe (SNe II-P) its presence has not been proved observationally FS He core ・ a part of dust grains formed in SNe are destroyed due to sputtering in the hot gas swept up by the shocks (Bianchi & Schneider’07; Nozawa+’07, ’10) ➔ the destruction efficiency of dust depends on the size distribution RS CD

1-3. Mass and size of dust ejected from SN II-P Nozawa+2007, ApJ, 666, 955 SNe II-P at time of dust formation after destruction of dust by reverse shock total dust mass surviving the destruction in Type II-P SNRs; 0.07-0.8 Msun (nH,0 = 0.1-1 cm-3) size distribution of dust after RS destruction is domimated by large grains (> 0.01 μm)

2-1. Dust formation in Type IIb SN ○ SN IIb model (SN1993J-like model)  - Meje = 2.94 Msun    MZAMS = 18 Msun      MH-env = 0.08 Msun   - E51 = 1.0   - M(56Ni) = 0.07 Msun

2-2. Dependence of dust radii on SN type SN IIb SN II-P 0.01 μm SN Ib (SN 2006jc) (Nozawa+2008) - condensation time of dust 300-700 d after explosion - total mass of dust formed ・ 0.167 Msun in SN IIb ・ 0.1-1 Msun in SN II-P - the radius of dust formed in H-stripped SNe is small ・ SN IIb without massive H-env ➔ adust < 0.01 μm ・ SN II-P with massive H-env ➔ adust > 0.01 μm Nozawa et al. 2010, ApJ, 713, 356

2-3. Destruction of dust in Type IIb SNR homogeneous CSM (ρ = const) stellar-wind CSM (ρ ∝ r-2) 330 yr nH,1 = 30, 120, 200 /cc ➔ dM/dt = 2.0, 8.0, 13x10-5 Msun/yr for vw=10 km/s Almost all newly formed grains are destroyed in shocked gas within the SNR for CSM gas density of nH > 0.1 /cc ➔ small radius of newly formed dust ➔ early arrival of reverse shock at dust-forming region Nozawa et al. 2010, ApJ, 713, 356

2-4. IR emission from dust in Cas A SNR AKARI corrected 90 μm image ・ total mass of dust formed Mdust = 0.167 Msun ・ shocked dust : 0.095 Msun Md,warm = 0.008 Msun ・ unshocked dust : Md,cool = 0.072 Msun with Tdust ~ 40 K AKARI observation Md,cool = 0.03-0.06 Msun Tdust = 33-41 K (Sibthorpe+’10) Herschel observation Md,cool = 0.075 Msun Tdust ~ 35 K (Barlow+’10) Nozawa et al. 2010, ApJ, 713, 356

3. Missing-dust problem in CCSNe Matsuura, ..., TN, et al. 2011, Science Tanaka, TN, et al. 2011, submitted cool dust in SN1987A theory cold dust ?? young SNRs Herschel detects cool (20K) dust of 0.4-0.7 Msun toward SN 1987A! young SNe There is a big difference in the mass of dust between observational estimates and theoretical predictions!!

4-1. Dust formation in Type Ia SNe ○ Type Ia SN model W7 model (C-deflagration) (Nomoto+’84; Thielemann+’86)  - Meje = 1.38 Msun   - E51 = 1.3   - M(56Ni) = 0.6 Msun

dust destruction in SNRs 4-2. Dust formation and evolution in SNe Ia Nozawa et al. 2011, ApJ, 736, 45 average radius dust destruction in SNRs 0.01 μm ・ condensation time : 100-300 days ・ average radius of dust : aave <~ 0.01 μm ・ total dust mass : Mdust ~ 0.1 Msun newly formed grains are completely destroyed for ISM density of nH > 0.1 cm-3 ➔ SNe Ia are poor sources of interstellar dust

5. Summary of this talk ・ Type II SNe with massive H envelopes - radius of dust formed : aave > 0.01 μm ➔ H-retaining SNe may be important sources of dust, supplying 0.1-1.0 Msun of dust to the ISM ・ Type IIb/Ib/Ia SNe without massive H envelopes - grain radius formed : aave < 0.01 μm ➔ dust is almost completely destroyed in the SNRs ➔ H-stripped SNe are not likely to be sources of dust * Our model treating dust formation and evolution self-consistently can reproduce the IR emission from Cas A SNR ・ Mass of dust in young SNRs are dominated by cool dust - FIR and submm observations of SNRs are essential ➔ Herschel detected massive cool dust in SN 1987A