Dialog Processing with Unsupervised Artificial Neural Networks

Slides:



Advertisements
Similar presentations
Heuristic Search techniques
Advertisements

Cognitive Systems, ICANN panel, Q1 What is machine intelligence, as beyond pattern matching, classification and prediction. What is machine intelligence,
Summer 2011 Tuesday, 8/ No supposition seems to me more natural than that there is no process in the brain correlated with associating or with.
Learning in Neural and Belief Networks - Feed Forward Neural Network 2001 년 3 월 28 일 안순길.
Introduction to Training and Learning in Neural Networks n CS/PY 399 Lab Presentation # 4 n February 1, 2001 n Mount Union College.
Biological and Artificial Neurons Michael J. Watts
Artificial Intelligence (CS 461D)
Neural Networks Basic concepts ArchitectureOperation.
LEARNING FROM OBSERVATIONS Yılmaz KILIÇASLAN. Definition Learning takes place as the agent observes its interactions with the world and its own decision-making.
Connectionist models. Connectionist Models Motivated by Brain rather than Mind –A large number of very simple processing elements –A large number of weighted.
How does the mind process all the information it receives?
Chapter Seven The Network Approach: Mind as a Web.
Neural Networks. Background - Neural Networks can be : Biological - Biological models Artificial - Artificial models - Desire to produce artificial systems.
© Curriculum Foundation1 Section 2 The nature of the assessment task Section 2 The nature of the assessment task There are three key questions: What are.
CHAPTER 12 ADVANCED INTELLIGENT SYSTEMS © 2005 Prentice Hall, Decision Support Systems and Intelligent Systems, 7th Edition, Turban, Aronson, and Liang.
MSE 2400 EaLiCaRA Spring 2015 Dr. Tom Way
Artificial Neural Nets and AI Connectionism Sub symbolic reasoning.
Hybrid AI & Machine Learning Systems Using Ne ural Networks and Subsumption Architecture By Logan Kearsley.
NEURAL NETWORKS FOR DATA MINING
Modelling Language Evolution Lecture 1: Introduction to Learning Simon Kirby University of Edinburgh Language Evolution & Computation Research Unit.
Bain on Neural Networks and Connectionism Stephanie Rosenthal September 9, 2015.
Neural Networks in Computer Science n CS/PY 231 Lab Presentation # 1 n January 14, 2005 n Mount Union College.
Neural Networks Teacher: Elena Marchiori R4.47 Assistant: Kees Jong S2.22
Dr.Abeer Mahmoud ARTIFICIAL INTELLIGENCE (CS 461D) Dr. Abeer Mahmoud Computer science Department Princess Nora University Faculty of Computer & Information.
Copyright Paula Matuszek Kinds of Machine Learning.
Dialog Processing with Unsupervised Artificial Neural Networks Andrew Richardson Thomas Jefferson High School for Science and Technology Computer Systems.
COSC 4426 AJ Boulay Julia Johnson Artificial Neural Networks: Introduction to Soft Computing (Textbook)
Minds and Computers Discovering the nature of intelligence by studying intelligence in all its forms: human and machine Artificial intelligence (A.I.)
Neural Networks. Background - Neural Networks can be : Biological - Biological models Artificial - Artificial models - Desire to produce artificial systems.
Pattern Recognition. What is Pattern Recognition? Pattern recognition is a sub-topic of machine learning. PR is the science that concerns the description.
Supervised Learning – Network is presented with the input and the desired output. – Uses a set of inputs for which the desired outputs results / classes.
Artificial Neural Networks This is lecture 15 of the module `Biologically Inspired Computing’ An introduction to Artificial Neural Networks.
Sparse Coding: A Deep Learning using Unlabeled Data for High - Level Representation Dr.G.M.Nasira R. Vidya R. P. Jaia Priyankka.
Section 2 Effective Groupwork Online. Contents Effective group work activity what is expected of you in this segment of the course: Read the articles.
Chapter 9 Knowledge. Some Questions to Consider Why is it difficult to decide if a particular object belongs to a particular category, such as “chair,”
Introduction to Machine Learning, its potential usage in network area,
Information Processing
What is cognitive psychology?
Principle Of Learning and Education Course NUR 315
Machine Learning for Computer Security
Questions and Ponderings On “Life”
Artificial Neural Networks
CEN3722 Human Computer Interaction Cognition and Perception
Fall 2004 Perceptron CS478 - Machine Learning.
Advanced information retreival
Typical Person :^) Fall 2002 CS/PSY 6750.
Chapter 7 Psychology: Memory.
Dialog Processing with Unsupervised Artificial Neural Networks
Real Neurons Cell structures Cell body Dendrites Axon
Neural Networks Dr. Peter Phillips.
What is an ANN ? The inventor of the first neuro computer, Dr. Robert defines a neural network as,A human brain like system consisting of a large number.
Data Mining Lecture 11.
Extraversion Introversion
Simple learning in connectionist networks
Artificial Intelligence
The Object-Oriented Thought Process Chapter 05
Chapter 12 Advanced Intelligent Systems
Theory of Computation Turing Machines.
OVERVIEW OF BIOLOGICAL NEURONS
What Are They? Who Needs ‘em? An Example: Scoring in Tennis
The Brain on Change Materials needed this session: Pens Handout
Typical Person :^) Fall 2002 CS/PSY 6750.
Simple learning in connectionist networks
EGR 2131 Unit 12 Synchronous Sequential Circuits
Partial Quotients Division
The Network Approach: Mind as a Web
Introduction to Neural Network

Silly mistakes: why we make them and what we can do about them
Lesson Overview 1.1 What Is Science?.
Presentation transcript:

Dialog Processing with Unsupervised Artificial Neural Networks Andrew Richardson Thomas Jefferson High School for Science and Technology Computer Systems Laboratory 2005 - 2006

Dialog Processing with Unsupervised Neural Networks Contents: What I did... Background (unsupervised neural networks) Program Mechanics Attributes of Nodes Attributes of Connections Lessons from Neurobiology Algorithms Further Research

What I Did Interest in Neural Networks (Unsupervised) Most researchers use Supervised NN's (Boring) Theory's really complicated Learning from brains... I found a new Field! (Cognitive Science) Too complicated for now Program a failure

Background: Neural Networks Outside of research, the neural networks used today are supervised, such that output for an input is matched against the right answer, and connections that produce the right answer are reinforced. The idea is that connections which have been right in the past will be right in the future.

Background: Unsupervised Neural Networks, or a Connectionist Model However, I think that unsupervised neural networks have more promise for complex tasks. This is more analogous to the neurons within the brain. Instead of affecting the network in a series of supervised tests, the network is systematically modified as a series of inputs, such as words, are read in. In an attempt to mimic the brain, my network reinforces connections between nodes that often fire one after the other. In this case, each word is represented by a node.

Program Mechanisms: Nodes However, it's not as simple as that. If the brain only noted connections between words, it wouldn't note connections to emotions or abstract ideas. In order to mimic these attributes of the brain, the ones that really think, nodes are added to the network that do not represent words. These take on meaning as they build connections to words and to each other. In time, they may let the network form complex ideas represented by nodes that have been influenced by the input text.

Program Mechanisms: Attributes of Nodes Like neurons in the human brain, nodes in my program vary in a variety of ways. Plasticity: A measure of how easy it is to modify the connections to and from this node Metaplasticity: A measure of how much more difficult it becomes to modify connections. This is important because it allows connections within the brain to become fix and finalized after having been changed, resisting further change. Of course, nodes can become less rigid as time goes on, or else the network would become unusable. The ease with which nodes do this also varies. This is important in the human brain in facilitating short term memory, wherein connections remain constant after having been established, but then become plastic again.

Program Mechanics: Attributes of Nodes Number of Connections: Some nodes have the capacity to connect to more nodes than others. This is theoretically more important when metasystems get more advanced than those in my current project. Threshold: Some nodes require more stimulation in order to fire than others. Base Values for Connections: Most connections between nodes are only the basic connections that do not yet reflect changes from the environment. The nodes remember what these values are for their connections. Type of Node: This is a reflection of something the brain does. I'm not sure why, but I put it in for good measure, because it seems important in the brain.

Attributes of Connections The links between the nodes are where the nodes actually remember past actions, so these attributes are particularly important. Strength of Connection: This is the power a connection has to activate the end node. This also stores whether the connection is excitatory or inhibitory. This is affected by attributes of the connected nodes.

Lessons From Neurobiology In designing my project, I tried to copy neurobiology, because designing from scratch is difficult Hebbian Learning Excitory/Inhibitory Neurotransmitter types/receivers Cognitive Science Network structures Plasticity Metaplasticity

Difficulties in Modeling and the Need for Algorithms In the human brain, which can also be thought of as an unsupervised neural network, neurons each have thousands of connections, and there are billions of neurons in the brain. We cannot expect a computer to handle all this without the mechanisms being simplified and optimized a bit.

Program Mechanics: Algorithms An unsupervised neural network can be thought of as a collection of nodes which form connections to each other. In the beginning, the network is set up having different types of nodes, with different types of characteristics and connections. In the beginning, these attributes and connections are all cookie-cutter; they do not encode meaningful information. Only after the network has changed in response to stimuli will the connections and attributes be important. Furthermore, only those connections that have changed to reflect the stimuli have important changes, and then only before they have been changed back to being non-descript.

Program Mechanisms: Algorithms So, my program attempts to conserve computational resources by taking advantage of the fact that most nodes aren't important. It keeps track of which nodes encode meaningful information, and keeps statistical information on those nodes that do not. Whenever new information needs to be assimilated, the existence of nodes is predicted using statistical information which are then brought into reality in order to hold useful information. In this way, the program processes no more than is actually needed, while at the same time reducing informational artifacts of the program from becoming too large.

Theory Computational Complexity Number of important connections proportionate to information to be stored How much does it need to know? Processing kept to a minimum Cognitive Science

Further Research: Representations As it currently stands, the program represents information by storing the connections between nodes as well as storing which nodes are important. It would be better if information were stored in a more intuitive and less spacious manner. Representational standards should be developed based on symbolic cognitive science.

Bibliography http://scholar.lib.vt.edu/ejournals/SPT/v5n2/dietrich.html - Explanation of the computationalist approach to cognitive science, the approach used in the theory of this program. http://www.ulg.ac.be/cogsci/jsougne/JScogsci96.pdf - explanation of how neurons need to be in phase to communicate. http://yudkowsky.net/bayes/bayes.html - Explanation of Bayesian math, which I'm attempting to use to model this program. http://www-psych.stanford.edu/~andreas/Research/Papers/TextCategorization/Wiener.Pedersen.Weigend_SDAIR95.ps - Neural net used for topic spotting.

Bibliography http://acl.ldc.upenn.edu/acl2002/EMNLP/pdfs/EMNLP142.pdf - The ambiguous nature of words described in this article supports the use of neural networks for processing rather than more rigid rule- based approaches. http://www.cs.stir.ac.uk/~lss/NNIntro/InvSlides.html - This article is particularly loquacious in describing the difference between supervised and unsupervised networks. The real power of neural networks is that they can learn, and it is important that I get sufficient learning material for my network. This will include dictionaries (which I am having trouble obtaining), and conversational transcripts. http://www.dacs.dtic.mil/techs/neural/neural3.html#RTFToC10 - This article talks about how networks can "memorize" data. Tbat is to say that they avoid learning the rules about the data, but instead learn only to respond to the input data used so far. It is also important to consider the topology of networks, because that is an additional level of complexity within the brain, or a neural network.

Bibliography http://scholar.google.com/scholar?hl=en&lr=&q=cache:fYGM13j1fhUJ:www.p hysics.brown.edu/users/faculty/intrator/papers/face- j.ps.gz+unsupervised+neural+network - Face recognition is generally done with more rigid algorithms, but this presents a way to use neural networks to achieve the desired recognition.