CSE 5290: Algorithms for Bioinformatics Fall 2009

Slides:



Advertisements
Similar presentations
Introduction to Computer Programming I CSE 113
Advertisements

2015/6/1Course Introduction1 Welcome! MSCIT 521: Knowledge Discovery and Data Mining Qiang Yang Hong Kong University of Science and Technology
CS 346U Exploring Complexity in Science and Technology Instructor: Melanie Mitchell Textbook: M. Mitchell, Complexity: A Guided Tour (Oxford University.
Jianlin Cheng, PhD Informatics Institute, Computer Science Department University of Missouri, Columbia Fall, 2011.
Bioinformatics: a Multidisciplinary Challenge Ron Y. Pinter Dept. of Computer Science Technion March 12, 2003.
UNIVERSITY OF SOUTH CAROLINA College of Engineering & Information Technology CSCE 590I Bioinformatics Algorithms and Data Structures Spring 2003 Instructor:
Workshop in Bioinformatics 2010 What is it ? The goals of the class… How we do it… What’s in the class Why should I take the class..
CS101- Lecture 11 CS101 Fall 2004 Course Introduction Professor Douglas Moody –Monday – 12:00-1:40 – – –Web Site: websupport1.citytech.cuny.edu.
Administrivia- Introduction CSE 373 Data Structures.
CSC 171 – FALL 2004 COMPUTER PROGRAMMING LECTURE 0 ADMINISTRATION.
STAT115 STAT215 BIO512 BIST298 Introduction to Computational Biology and Bioinformatics Spring 2015 Xiaole Shirley Liu Please Fill Out Student Sign In.
Structural Bioinformatics Dr. Avraham Samson Course no.: Credit points: 1.5 Final grade is based on 10 assignments Course homepage:
Topics in Computational Biology (COSI 230a) Pengyu Hong 09/02/2005.
EECS 395/495 Algorithmic Techniques for Bioinformatics General Introduction 9/27/2012 Ming-Yang Kao 19/27/2012.
Presented by Liu Qi An introduction to Bioinformatics Algorithms Qi Liu
Data and Text Mining for Computational Biology Introduction.
BIO337 Systems Biology/Bioinformatics (course # 50524) Spring 2014 Tues/Thurs 11 – 12:30 PM BUR 212 Edward Marcotte/Univ. of Texas/BIO337/Spring 2014.
CSE 4705 Artificial Intelligence
WEEK 1 CS 361: ADVANCED DATA STRUCTURES AND ALGORITHMS Dong Si Dept. of Computer Science 1.
CS324e - Elements of Graphics and Visualization Class Intro
9/30/2004TCSS588A Isabelle Bichindaritz1 Introduction to Bioinformatics.
Introduction CSE 1310 – Introduction to Computers and Programming
CSI Evolutionary Computation Fall Semester, 2009.
CS 160 Introduction to Computer Science Andrew Scholer
Introduction CSE 1310 – Introduction to Computers and Programming Vassilis Athitsos University of Texas at Arlington 1.
BME 110L / BIOL 181L Computational Biology Tools Introductory Remarks and Overview - who - why - what - how Logistics.
Introduction to Bioinformatics Lecturer: Prof. Yael Mandel-Gutfreund Teaching Assistance: Rachelly Normand Edward Vitkin Course web site :
Introduction to Bioinformatics Biostatistics & Medical Informatics 576 Computer Sciences 576 Fall 2008 Colin Dewey Dept. of Biostatistics & Medical Informatics.
Introduction to ECE 2401 Data Structure Fall 2005 Chapter 0 Chen, Chang-Sheng
Biological Signal Detection for Protein Function Prediction Investigators: Yang Dai Prime Grant Support: NSF Problem Statement and Motivation Technical.
AdvancedBioinformatics Biostatistics & Medical Informatics 776 Computer Sciences 776 Spring 2002 Mark Craven Dept. of Biostatistics & Medical Informatics.
Condor: BLAST Rob Quick Open Science Grid Indiana University.
COT 5405: Design and Analysis of Algorithms Cliff Zou Spring 2015.
1/10/ Math/CSE 1019N: Discrete Mathematics for Computer Science Winter 2007 Suprakash Datta Office: CSEB 3043 Phone:
BME 110L / BIOL 181L Computational Biology Tools Introductory Remarks and Overview - who - why - what - how Logistics.
Introduction to Information Security J. H. Wang Sep. 18, 2012.
MAT 279 Data Communication and the Internet Prof. Shamik Sengupta Office New Building
1 Computational Vision CSCI 363, Fall 2012 Lecture 1 Introduction to Vision Science Course webpage:
Splicing Exons: A Eukaryotic Challenge to Gene Prediction Ian McCoy.
Computer Programming for Engineers CMPSC 201C Fall 2000.
Course Overview: Linear Algebra
COT 4600 Operating Systems Fall 2010 Dan C. Marinescu Office: HEC 439 B Office hours: Tu-Th 3:30-4:30 PM.
BCH339N Systems Biology/Bioinformatics (course # 54040) Spring 2016 Tues/Thurs 11 – 12:30 PM BUR 212.
CMPT 238 Data Structures Instructor: Tina Tian. General Information Office: RLC 203A Office Hour: Tue and Fri 12:30 - 2:00PM.
BUS 310 Statistics Bill Remus. u TuTh 1:30pm and 3pm u Bill Remus u C502 Office Hours W 1:30-4:30 and By Appointment u Phone: u
CSCE 121, Sec 200 Fall 2012 Prof. Jennifer L. Welch.
Introduction to Bioinformatics and Functional Genomics
CS5040: Data Structures and Algorithms
CS498-CXZ Algorithms in Bioinformatics
Bioinformatics Madina Bazarova. What is Bioinformatics? Bioinformatics is marriage between biology and computer. It is the use of computers for the acquisition,
Introduction CSE 1310 – Introduction to Computers and Programming
LEARN WHY COMPUTERS ARE REVOLUTIONIZING BIOLOGY!
CS 201 – Data Structures and Discrete Mathematics I
CSE 5290: Algorithms for Bioinformatics Fall 2009
PABIO 590B Advanced Topics in Bioinformatics
CS 160 Introduction to Computer Science
COT 4600 Operating Systems Spring 2011
Course page: CSE/Math 1560: Introduction to Computing for Mathematics and Statistics Winter 2011 Suprakash Datta.
CAP 6412: Advanced Computer Vision
Introduction to Bioinformatic
Administrivia- Introduction
CMPUT101: Purpose of the Course
Lecture 2 Introduction/Overview Fri. 9/8/00
Administrivia- Introduction
Biology-CP.
Welcome! Knowledge Discovery and Data Mining
CMPT 102 Introduction to Scientific Computer Programming
Introduction to Bioinformatics
CSE 5290: Algorithms for Bioinformatics Fall 2009
CSCI 1730: C++ and System Programming
Presentation transcript:

CSE 5290: Algorithms for Bioinformatics Fall 2009 Suprakash Datta datta@cs.yorku.ca Office: CSEB 3043 Phone: 416-736-2100 ext 77875 Course page: http://www.cs.yorku.ca/course/5290 4/29/2019 CSE 5290, Fall 2009

My research Computer Networks….. Clustering of Biological data, e.g. Flow cytometry data Microarray data Genomic Signal Processing Convert biological sequences to numerical sequences and apply signal processing tools exon prediction, retroviral insertions 4/29/2019 CSE 5290, Fall 2009

Administrivia Lectures: Tue-THu 1:00 - 2:30 pm (Ross S 537) Textbook: Lectures: Tue-THu 1:00 - 2:30 pm (Ross S 537) Office hours: Wed 1-4 pm, or by appointment. TA: none. http://www.cs.yorku.ca/course/5290 Webpage: All announcements/handouts will be published on the webpage -- check often for updates) An Introduction to Bioinformatics Algorithms Neil C. Jones and Pavel A. Pevzner MIT Press, August 2004. 4/29/2019 CSE 5290, Fall 2009

Administrivia – contd. Described in more detail on webpage Grading: Midterms : 30% Homework : 30% Project: 40% Grades: will be on ePost. Project details are on the webpage. 4/29/2019 CSE 5290, Fall 2009

Course objectives Familiarity with computational problems in Biology Applying algorithmic ideas Understand real-life computational challenges Improve understanding of algorithms 4/29/2019 CSE 5290, Fall 2009

What I expect from you Some familiarity with undergraduate algorithms Interest in computational problems Willingness to pick up a little Biology Active interest in your project and assignments 4/29/2019 CSE 5290, Fall 2009

What is bioinformatics? No consensus! Genomics Proteomics Evolutionary biology Clinical trial informatics Epidemiology? Medical image processing? Artificial life? From http://www.ncbi.nlm.nih.gov/About/primer/bioinformatics.html “Bioinformatics is the field of science in which biology, computer science, and information technology merge to form a single discipline.” 4/29/2019 CSE 5290, Fall 2009

Why Bioinformatics? Make an impact! Interdisciplinary work Work with real data sets Use algorithmic skills 4/29/2019 CSE 5290, Fall 2009

Biological (genomic) data ATATTGAATTTTCAAAAATTCTTACTTTTTTTTTGGATGGACGCAAAGAAGTTTAATAATCATATTACATGGCATTACCACCATATATATCCATATCTAATCTTACTTATATGTTGTGGAAATGTAAAGAGCCCCATTATCTTAGCCTAAAAAAACCTTCTCTTTGGAACTTTCTAATACGCTTAACTGCTCATTGCTATATTGAAGTACGGATTAGAAGCCGCCGAGCGGGCGACAGCCCTCCGACGGAAGACTCTCCTCTGCGTCCTCGTCTTCACCGGTCGCGTTCCTGAAACGCAGATGTGCCTCGCGCCGCACTGCTCCGAACAATAAAGATTCTACAATACTCTTTTATGGTTATGAAGAGGAAAAATTGGCAGTAACCTGGCCCCACAAACCTTCAAATTAACGAATCAAATTAACAACCATAGGATGAATGCGATTAGTTTTTTAGCCTTATTTCTGGGGTAATTAATCAGCGAAGCGATGATTTTTGATCTATTAACAGATATATAAATGGAAGCTGCATAACCACTTTAACTAATACTTTCAACATTTTCAGTTTGTATTACTTCTTATTCAAATGTCATAAAAGTATCAACAAAAAATTTAATATACCTCTATACTTTAACGTCAAGGAGAAAAAACTATAATGACTAAATCTCATTCAGAAGAAGTGATTGTACCTGAGTTCAACTAGCGCAAAGGAATTACCAAGACCATTGGCCGAAAAGTGCCCGAGCATAATTAAGAAATTTATAAGCGCTTATGATGCTAAACCGGTTTGTTGCTAGATCGCCTGGTAGAGTCAATCTAATTGGTGAACATATTGATTATTGTGACTTCTCGGTTTTACCTTTAGCTATTGATTGATATGCTTTGCGCCGTCAAAGTTTTGAACGAGAAAAATCCATCCATTACCTTAATAAATGCTGATCCCAAATTTGCTCAAAGGAATCGATTTGCCGTTGGACGGTTCTTATGTCACAATTGATCCTTCTGTGTCGGACTGGTCTAATTACTTTAAATGTGGTCTCCATGTTGCACTCTTTTCTAAAGAAACTTGCACCGGAAAGGTTTGCCAGTGCTCCTCTGGCCGGGCTGCAAGTCTTCTGTGAGGGTGATGTACCATGGCAGTGATTGTCTTCTTCGGCCGCATTCATTTGTGCCGTTGCTTTAGCTGTTGTTAAAGCGAATATGGGCCCTGGTTATCATATCCAAGCAAAATTTAATGCGTATTACGGTCGTTGCAGAACATTATGTTGGTGTTAACAATGGCGGTATGGATCAGGCTGCCTCTGTTTGGTGAGGAAGATCATGCTCTATACGTTGAGTTCAAACCGCAGTTGAAGGCTACTCCGTTTAAATTTCCGCAATTAAAAAACCATGAATAGCTTTGTTATTGCGAACACCCTTGTTGTATCTAACAAGTTTGAAACCGCCCCAACCAACTATAATTTAAGAGTGGTAGAAGTCACCAGCTGCAAATGTTTTAGCTGCCACGTACGGTGTTGTTTTACTTTCTGGAAAAGAAGGATCGAGCACGAATAAAGGTAATCTAAGAGTTCATGAACGTTTATTATGCCAGATATCACAACATTTCCACACCCTGGAACGGCGATATTGAATCCGGCATCGAACGGTTAACAAAGGCTAGTACTAGTTGAAGAGTCTCTCGCCAATAAGAAACAGGGCTTTAGTGTTGACGATGTCGCACAATCCTTGAATTGTTCTCGCGAAATTCACAAGAGACTACTTAACAACATCTCCAGTGAGATTTCAAGTCTTAAAGCTATATCAGAGGGCTAAGCATGTGTATTCTGAATTTAAGAGTCTTGAAGGCTGTGAAATTAATGACTACAGCGAGCTTTACTGCCGACGAAGACTTTTTCAAGCAATTTGGTGCCTTGATGCGAGTCTCAAGCTTCTTGCGATAAACTTTACGAATGTTCTTGTCCAGAGATTGACAAAATTTGTTCCATTGCTTTGTCAAATGGATCATGGTTCCCGTTTGACCGGAGCTGGCTGGGGTGGTTGTACTGTTCACTTGGTTCCAGGGGGCCCAAATGGCAACATAGAAAAGGTAAGAAGCCCTTGCCAATGAGTTCTACAAGGTCAAGTACCCTAAGATCACTGATGCTGAGCTAGAAAATGCTATCATCGTCTCTAAACCAATTGGGCAGCTGTCTATATGAATTATAAGTATACTTCTTTTTTTTACTTTGTTCAGAACAACTTCTCATTTTTTTCTACTCATAACTAGCATCACAAAATACGCAATAATAACGAGTAGTAACACTTTTATAGTTCATACATGCTTCAACTACTTAATAAATGATTGTATGATAGTTTTCAATGTAAGAGATTTCGATTATCCACAAACTTTAAAACACAGGGACAAAATTCTTGATATGCTTTCAACCGCTGCGTTTTGGACCTATTCTTGACATGATATGACTACCATTTTGTTATTGTACGTGGGGCAGTTGACGTCTTATCATATGTCAAAGTCATTTGCGAAGCTTGGCAAGTTGCCAACTGACGAGATGCAGTAAAAAGAGATTGCCGTCTTGAAACTTTTTGTCCTTTTTTTTTTCCGGGGACTCTACGAACCCTTTGTCCTACTGATTAATTTTGTACTGAATTTGGACAATTCAGATTTTAGTAGACAAGCGCGAGGAGGAAAAGAAATGACAAAAATTCCGATGGACAAGAAGATAGGAAAAAAAAAAAGCTTTCACCGATTTCCTAGACCGGAAAAAAGTCGTATGACATCAGAATGAAATTTTCAAGTTAGACAAGGACAAAATCAGGACAAATTGTAAAGATATAATAAACTATTTGATTCAGCGCCAATTTGCCCTTTTCCATTCCATTAAATCTCTGTTCTCTCTTACTTATATGATGATTAGGTATCATCTGTATAAAACTCCTTTCTTAATTTCACTCTAAAGCATCCCATAGAGAAGATCTTTCGGTTCGAAGACATTCCTACGCATAATAAGAATAGGAGGGAATAATGCCAGACAATCTATCATTACATTAGCGGCTCTTCAAAAAGATTGAACTCTCGCCAACTTATGGAATCTTCCAATGAGACCTTTGCGCCAAATAATGTGGATTTGGAAAAAGTATAAGTCATCTCAGAGTAATATAACTACCGAAGTTTATGAGGCATCGAGCTTTGAAGAAAAAGTAAGCTCAGAAAAACCTCAATAGCTCATTCTGGAAGAAAATCTATTATGAATATGTGGTCGTTGACAAATCAATCTTGGGTGTTTCTATTCTGGATTCATTTATGTACACAGGACTTGAAGCCCGTCGAAAAAGAAAGGCGGGTTTGGTCCTGGTACAATTATTGTTACTTCTGGCTTGCTGAATGTTTCAATATCCACTTGGCAAATTGCAGCTACAGGTCTACAACTGGGTCTAAATTGGTGGCAGTGTTGGATAACAATTTGGATTGGGTACGGTTTCGTGTGCTTTTGTTGTTTTGGCCTCTAGAGTTGGATCTGCTTATCATTTGTCATTCCCTATATCATCTAGAGCATCATTCGGTATTTTCT 4/29/2019 CSE 5290, Fall 2009

Annotated data 4/29/2019 CSE 5290, Fall 2009 ATATTGAATTTTCAAAAATTCTTACTTTTTTTTTGGATGGACGCAAAGAAGTTTAATAATCATATTACATGGCATTACCACCATATATATCCATATCTAATCTTACTTATATGTTGTGGAAATGTAAAGAGCCCCATTATCTTAGCCTAAAAAAACCTTCTCTTTGGAACTTTCTAATACGCTTAACTGCTCATTGCTATATTGAAGTACGGATTAGAAGCCGCCGAGCGGGCGACAGCCCTCCGACGGAAGACTCTCCTCTGCGTCCTCGTCTTCACCGGTCGCGTTCCTGAAACGCAGATGTGCCTCGCGCCGCACTGCTCCGAACAATAAAGATTCTACAATACTCTTTTATGGTTATGAAGAGGAAAAATTGGCAGTAACCTGGCCCCACAAACCTTCAAATTAACGAATCAAATTAACAACCATAGGATGAATGCGATTAGTTTTTTAGCCTTATTTCTGGGGTAATTAATCAGCGAAGCGATGATTTTTGATCTATTAACAGATATATAAATGGAAGCTGCATAACCACTTTAACTAATACTTTCAACATTTTCAGTTTGTATTACTTCTTATTCAAATGTCATAAAAGTATCAACAAAAAATTTAATATACCTCTATACTTTAACGTCAAGGAGAAAAAACTATAATGACTAAATCTCATTCAGAAGAAGTGATTGTACCTGAGTTCACTAGCGCAAAGGAATTACCAAGACCATTGGCCGAAAAGTGCCGAGCATAATTAAGAAATTTATAAGCGCTTATGATGCTAAACCGAGTTGTATGTATTTGGCCTTATGTAGCTCGCGCCCGTTCGAGATAAGGATGTTTCTAGAAATCCGTAAAGATATAGAGATGTACACACATCTACATTTGTAACTCTATTTATAGTTAGAAACTTGTCCTCGAGGTCTCTCTATAAACCTTTTTGTACGTCCATAAATGTGGAAATCTACCGATCTTTTTGTCTCCGTATATAGGGAAACAGCGTTTTCGCTATACCTGGGTACAAACAGAGTTTTGTAGCTCCACGTTTCGCTGTCTCGTTCCGTGGAGCCCTGGGGGTCCTTAGACATATACTCTTTTTACATAGTTGGATGGGGGTCTGTACCTAGTTAGCTCTAGCTCGAGACAGCGATAGAGAATTTTGTATACTTGTCCGTTTACGTGTACCCGGCGATCTGTCTATGTCTATGGATAGCCACGTTTATGTCGTTTTGTAGGTCGTTGTATATCGATATATAGAGCGCGGATAATTAGGTAGGTCGACCGCGCTGTGGCTCTATCTCTAGTTATTTGTAGGTCGATGTGTAGATGTAATTCTAGCTGGACATCCATACCTACCTGTGTTTGTAGGTATTTCCATAAAACCACAGCGATGTTTGTAGAAAACGCGCGCTACCCCTACACCGCTATATACATAATATATCTCTGTACAAAGATGTATAGAGATAAAGACACAGTTCGAAACCTATCGACTTGGACAAACAGTTGTTTATTTTTAAGTCGCTCGACCGAACTAGTTACACCGAGATCGATTTGTTTCTCTATACACCTCTCTCTGTGGAGAAACAGAGCGAGAAGTAGATTTCGAGAAGCCACCGGGACAATTACAGAAAGCGGTAGATTTACATACAAAGAAGGAGACTTATCGATACACATAGAGGTATCGATAACGATGTATACCTACATCCAGCTCCATACCTAAAGGTAGAAAGACATGTGTCGACATGTTTACGTTTAGATATGGACCTAGATATGTCTACGGACACGAGACTTACACGTCTAGATAGTTGTGTATTTCTCTCTGGACAGATCTGTAAAGGTACGTCTACATGTCGATATCGGTCTGTCGGTAGATAAAAATCTATATTTAGACCGATAACTAGGTCTCGATGTCGTTCTCTAACGATGGACCTGTAGACCGAAAAAGAACTTTTTGTTTTCCACAAGTCTAGACTTTTTTGGGTCTAGACACTTGTGGAATTCGAGATAGGGCTCTCCCTCTGGCTCTATAGATCGACGGGTATCGCTATCGAGACGTGGGTCGAGATGGGTATCTCGCTATACATGGATTTCCAACCTTGTAGGTGTCTCTCGAAGGCGGTAGGGACACAAAATAGCTGTAGCTACAACTACGTATCGATACATAAAGAGCTACAAATTGGGCAGCTGTCTATATGAATTATAAGTATACTTCTTTTTTTTACTTTGTTCAGAACAACTTCTCATTTTTTTCTACTCATAACTAGCATCACAAAATACGCAATAATAACGAGTAGTAACACTTTTATAGTTCATACATGCTTCAACTACTTAATAAATGATTGTATGATAGTTTTCAATGTAAGAGATTTCGATTATCCACAAACTTTAAAACACAGGGACAAAATTCTTGATATGCTTTCAACCGCTGCGTTTTGGACCTATTCTTGACATGATATGACTACCATTTTGTTATTGTACGTGGGGCAGTTGACGTCTTATCATATGTCAAAGTCATTTGCGAAGCTTGGCAAGTTGCCAACTGACGAGATGCAGTAAAAAGAGATTGCCGTCTTGAAACTTTTTGTCCTTTTTTTTTTCCGGGGACTCTACGAACCCTTTGTCCTACTGATTAATTTTGTACTGAATTTGGACAATTCAGATTTTAGTAGACAAGCGCGAGGAGGAAAAGAAATGACAAAAATTCCGATGGACAAGAAGATAGGAAAAAAAAAAAGCTTTCACCGATTTCCTAGACCGGAAAAAAGTCGTATGACATCAGAATGAAATTTTCAAGTTAGACAAGGACAAAATCAGGACAAATTGTAAAGATATAATAAACTATTTGATTCAGCGCCAATTTGCCCTTTTCCATTCCATTAAATCTCTGTTCTCTCTTACTTATATGATGATTAGGTATCATCTGTATAAAACTCCTTTCTTAATTTCACTCTAAAGCATACCGCCAGGTACGTACGTATACAGAAATACATGTATCTGTGGATATCCGTACATCGAGCCACATATCCCTTTAACTGGCGAAATATACTTATACCGAAAATTAGAGGGAACGCGGTATATGTACGACCGACACAATGAAACTAGATTGCGTAATTTCTAGTGTAAACAAATATGGCTATCTAAATGTCTCTAGGTACATCGAAAGAAAGTTACATATATTTAAATCGATAACTACGTAGATGGGTTTCTAGTTGTAGAGCGACAAATCTCGAAAGCTCTTTTTGGAGAGGTAGATATATAGTATATATCGCTGTCGAAGTATACAAATATCTACTTCGATAACTAACCAACGGTATCGGTCTAGAAAAGTCTCGCCAGGTCCGTAAACAAAGAGGTACATAACGAGACCGGTGGGTGTTTCGGTATACACTTGTGGGTATCGAGACATGTATGTTTGTGTGTAACTATATCCAAGGTCTTTGTGGACTTGTAGAGGTGTATCTGTCGATATTTACGTC 4/29/2019 CSE 5290, Fall 2009

Importance of algorithms – Compare human vs. mouse (blocks of 1,000 nucleotides) • 3,000,000*3,000,000 comparisons, each 1,000*1,000 operations (w/dynamic progr.) • At 1 trillion operations per second, it would take 104 days – Search all regulatory motifs of length 20 (11^20) in the human genome • 426 years 4/29/2019 CSE 5290, Fall 2009

Clustering flow cytometry data 1 million vectors Each of length 25 (real numbers) Need quick output! Results should be biologically meaningful! 4/29/2019 CSE 5290, Fall 2009

R: introduction Why R? Lots of available libraries (statistics, machine learning,…..) Very good visualization capability Free Multiplatform Easy to publish code Biologists use it! 4/29/2019 CSE 5290, Fall 2009

R - contd Grew out of a popular statistics package Used extensively by statisticians and computational biologists Lots of resources (see class web page) Some similarities with MatLab 4/29/2019 CSE 5290, Fall 2009

R – strengths and weaknesses Allows very quick testing of ideas Libraries available for most purposes Allows integration with C code Weaknesses Not as efficient as MatLab on matrix operations Not very good at handling large data sets 4/29/2019 CSE 5290, Fall 2009

Next class Ch 3 of text In the meantime… Read Ch 1 and 2 on your own. Get familiar with R 4/29/2019 CSE 5290, Fall 2009