Volume 18, Issue 12, Pages (December 2010)

Slides:



Advertisements
Similar presentations
Volume 6, Issue 1, Pages (January 1998)
Advertisements

Volume 25, Issue 8, Pages e4 (August 2017)
Volume 16, Issue 4, Pages (April 2008)
The Structure of the Cytoplasmic Domain of the Chloride Channel ClC-Ka Reveals a Conserved Interaction Interface  Sandra Markovic, Raimund Dutzler  Structure 
Erica M. Dutil, Alex Toker, Alexandra C. Newton  Current Biology 
Yvonne Groemping, Karine Lapouge, Stephen J. Smerdon, Katrin Rittinger 
Volume 18, Issue 8, Pages (August 2010)
Xuewu Zhang, Jodi Gureasko, Kui Shen, Philip A. Cole, John Kuriyan 
Volume 36, Issue 4, Pages (November 2009)
Volume 137, Issue 7, Pages (June 2009)
Volume 20, Issue 5, Pages (May 2012)
Rong Shi, Laura McDonald, Miroslaw Cygler, Irena Ekiel  Structure 
Phospho-Pon Binding-Mediated Fine-Tuning of Plk1 Activity
Substrate Recognition Mechanism of Atypical Protein Kinase Cs Revealed by the Structure of PKCι in Complex with a Substrate Peptide from Par-3  Chihao.
Charlotte Hodson, Andrew Purkiss, Jennifer Anne Miles, Helen Walden 
Volume 15, Issue 3, Pages (March 2007)
Crystal Structures of a Ligand-free MthK Gating Ring: Insights into the Ligand Gating Mechanism of K+ Channels  Sheng Ye, Yang Li, Liping Chen, Youxing.
Volume 16, Issue 10, Pages (October 2008)
Volume 13, Issue 8, Pages (August 2005)
Crystal Structure of Human Mre11: Understanding Tumorigenic Mutations
Volume 20, Issue 10, Pages (October 2012)
Structural Analysis of Ligand Stimulation of the Histidine Kinase NarX
Binding Dynamics of Isolated Nucleoporin Repeat Regions to Importin-β
A Gating Mechanism of the Serotonin 5-HT3 Receptor
Volume 16, Issue 5, Pages (May 2008)
Zhenjian Cai, Nabil H. Chehab, Nikola P. Pavletich  Molecular Cell 
Volume 26, Issue 2, Pages e4 (February 2018)
Volume 14, Issue 5, Pages (May 2006)
Jiao Yang, Melesse Nune, Yinong Zong, Lei Zhou, Qinglian Liu  Structure 
Volume 25, Issue 6, Pages e3 (June 2017)
Volume 20, Issue 3, Pages (March 2012)
Volume 30, Issue 3, Pages (May 2008)
Volume 17, Issue 10, Pages (October 2009)
Volume 95, Issue 7, Pages (December 1998)
Volume 19, Issue 9, Pages (September 2011)
Coiled-Coil Domains of SUN Proteins as Intrinsic Dynamic Regulators
Volume 21, Issue 1, Pages (January 2013)
Volume 21, Issue 3, Pages (March 2013)
Volume 21, Issue 7, Pages (July 2013)
A Putative Mechanism for Downregulation of the Catalytic Activity of the EGF Receptor via Direct Contact between Its Kinase and C-Terminal Domains  Meytal.
Volume 106, Issue 4, Pages (August 2001)
Volume 23, Issue 6, Pages (June 2015)
Volume 14, Issue 4, Pages (April 2006)
Reduced Curvature of Ligand-Binding Domain Free-Energy Surface Underlies Partial Agonism at NMDA Receptors  Jian Dai, Huan-Xiang Zhou  Structure  Volume.
Protein Kinase D Inhibitors Uncouple Phosphorylation from Activity by Promoting Agonist-Dependent Activation Loop Phosphorylation  Maya T. Kunkel, Alexandra C.
Conformation-Selective ATP-Competitive Inhibitors Control Regulatory Interactions and Noncatalytic Functions of Mitogen-Activated Protein Kinases  Sanjay B.
Volume 24, Issue 10, Pages (October 2016)
The Active Conformation of the PAK1 Kinase Domain
Volume 20, Issue 1, Pages (January 2012)
Volume 24, Issue 9, Pages (September 2016)
E.Radzio Andzelm, J Lew, S Taylor  Structure 
Volume 105, Issue 1, Pages (April 2001)
Volume 19, Issue 7, Pages (July 2011)
Jue Wang, Jia-Wei Wu, Zhi-Xin Wang  Structure 
Volume 26, Issue 4, Pages e4 (April 2018)
Clemens C. Heikaus, Jayvardhan Pandit, Rachel E. Klevit  Structure 
Structure of the Siz/PIAS SUMO E3 Ligase Siz1 and Determinants Required for SUMO Modification of PCNA  Ali A. Yunus, Christopher D. Lima  Molecular Cell 
Volume 27, Issue 5, Pages (September 2007)
Volume 13, Issue 5, Pages (May 2005)
Volume 12, Issue 11, Pages (November 2004)
Volume 14, Issue 3, Pages (March 2006)
Susan S. Taylor, Nina M. Haste, Gourisankar Ghosh  Cell 
Volume 13, Issue 5, Pages (May 2005)
Y. Zenmei Ohkubo, Emad Tajkhorshid  Structure 
Petra Hänzelmann, Hermann Schindelin  Structure 
Structure of GABARAP in Two Conformations
Structure of the Mtb CarD/RNAP β-Lobes Complex Reveals the Molecular Basis of Interaction and Presents a Distinct DNA-Binding Domain for Mtb CarD  Gulcin.
Volume 21, Issue 6, Pages (June 2013)
Morgan Huse, Ye-Guang Chen, Joan Massagué, John Kuriyan  Cell 
Volume 20, Issue 5, Pages (May 2012)
Presentation transcript:

Volume 18, Issue 12, Pages 1667-1677 (December 2010) Allosteric Activation Mechanism of the Mycobacterium tuberculosis Receptor Ser/Thr Protein Kinase, PknB  T. Noelle Lombana, Nathaniel Echols, Matthew C. Good, Nathan D. Thomsen, Ho-Leung Ng, Andrew E. Greenstein, Arnold M. Falick, David S. King, Tom Alber  Structure  Volume 18, Issue 12, Pages 1667-1677 (December 2010) DOI: 10.1016/j.str.2010.09.019 Copyright © 2010 Elsevier Ltd Terms and Conditions

Figure 1 Dimerization Regulates PknB Activity (A) Dimerization does not activate phosphorylated PknB. Myelin basic protein is phosphorylated similarly by phosphorylated PknB1-330-FKBP, PknB1-330-FRB or an equimolar mixture of these fusion proteins (PknB (FKBP + FRB)) in the presence (filled bars) or absence (open bars) of 10 μM rapamycin. Total kinase concentrations are indicated. Error bars show the standard deviation of three independent experiments. See also Figure S2. (B) Rapamycin does not affect autophosphorylation of isolated, unphosphorylated PknB1-330-FKBP or PknB1-330-FRB. Autoradiogram showing ©-32P incorporation into 4 μM of PknB-FKBP or PknB-FRB incubated for 10 min (first four lanes) or 20 min (last four lanes). The ratios of activities with and without rapamycin are 1.0 ± 0.1 and 0.99 ± 0.1, respectively. (C) Dimerization activates unphosphorylated PknB. Autophosphorylation of unphosphorylated PknB1-330-FKBP and PknB1-330-FRB in the presence (filled circles) or absence (open circles) of rapamycin. Error bars show the standard deviation of three independent experiments. (D) Kinase concentration dependence of autophosphorylation rates reflects an intermolecular reaction. Autophosphorylation rate is plotted against kinase concentration for the mixture of unphosphorylated PknB1-330-FKBP and PknB1-330-FRB in the presence (filled circles) or absence (open circles) of rapamycin. Error bars show the standard deviation of three independent experiments. Structure 2010 18, 1667-1677DOI: (10.1016/j.str.2010.09.019) Copyright © 2010 Elsevier Ltd Terms and Conditions

Figure 2 The PknB N-Lobe Interface Is Required for Efficient Autophosphorylation and Substrate Phosphorylation (A) Invariant residues Arg10, Leu33, and Asp76 form intermolecular contacts between PknB monomers (gray and blue (left)) (PDB code: 1mru). Hydrogen bonds are indicated by dotted lines. Reciprocal interactions include the Arg10-Asp76 ion pair and Leu33 hydrophobic contacts with Asp76 and the C-helix (top right). (B) Mutations in the PknB N-lobe dimer interface impair autophosphorylation and phosphorylation of inactive PknB in vitro. Autoradiogram showing autophosphorylation of unphosphorylated PknB1-330 fusions (top) and transphosphorylation of inactive Asp138Asn PknB1-308 KD (bottom). Dimerization with the inactive Asp138Asn mutant (D138N-FRB) activates the paired active subunit (PknB-FKBP), indicating that the dimer interface plays an allosteric role. (C) Mutations in the PknB N-lobe dimer interface impair substrate phosphorylation in vivo. Western blots of M. smegmatis strains overexpressing the indicated full-length Mtb PknB variant or vector alone (pHR100) were probed using anti-phosphoThr (α-pThr; top) or anti-PknB (α-PknB; bottom) antibodies. Structure 2010 18, 1667-1677DOI: (10.1016/j.str.2010.09.019) Copyright © 2010 Elsevier Ltd Terms and Conditions

Figure 3 Dimer Interface Mutations Cause Conformational Changes in the PknB N-Lobe and Active Site (A) The monomeric Leu33Asp PknB KD shows large structural changes in the N-lobe compared with wild-type PknB. The dimeric wild-type PknB KD (blue, one monomer shown) and four distinct structures of the Leu33Asp KD (conformation 1 chain A: red; conformation 1 chain C: orange; conformation 2: yellow; conformation 3: green) are superimposed using the Cα atoms of C-lobe residues 100–155 and 185–285. Nucleotide and metals are omitted for clarity. See also Figure S3. (B) The C-helix shifts downward toward the C-lobe and inward toward the active site in the Leu33Asp PknB KD structures (conformation 1 (c.1): red; conformation 2 (c.2): yellow; conformation 3 (c.3): green) compared with wild-type PknB (blue). The C-terminal turn of the C-helix unwinds in the Leu33Asp KD conformations 2 and 3, the Lys40-Glu59 ion pair is broken and the C-helix N terminus (right; Ser51) shifts up to 11 Å. In concert, the bound nucleotide shifts away from the active conformation. (C) Conformational changes occur in the active site of the Leu33Asp PknB KD compared with wild-type PknB. Each panel shows identical views of Leu33Asp conformations 1, 2, and 3 (c.1, c.2, and c.3) when the C-lobes are superimposed. C-helix shifts break the Lys40-Glu59 ion pair and couple directly to the DFG motif through contacts of Phe157 with C-helix residues Ala63 and Ala64. These multiple conformations suggest that the monomeric PknB KD is more flexible than the dimer. Structure 2010 18, 1667-1677DOI: (10.1016/j.str.2010.09.019) Copyright © 2010 Elsevier Ltd Terms and Conditions

Figure 4 Unique Conformational Changes Inactivate PknB Compared with Eukaryotic Kinases The C-helix of monomeric, inactive PknB shifts in the opposite direction as eukaryotic kinases. Superposition of inactive (left) and active (right) kinase conformations of PknB (blue; Leu33Asp conformation 1 and 1mru), CDK2 (red; 1b38 and 1jst), Src (yellow; 1y57 and 1ad5), EGFR (green; 2gs7 and 2gs6), PKR (orange; no inactive structure and 2a19), and Ire1 (violet; no inactive structure and 2rio). Structure 2010 18, 1667-1677DOI: (10.1016/j.str.2010.09.019) Copyright © 2010 Elsevier Ltd Terms and Conditions

Figure 5 Model for PknB Regulation (1) The unphosphorylated PknB monomer (kinase domain: dark blue) is the inactive species. (2) Dimerization, possibly mediated by ligand binding (violet) to the extracellular PASTA domains (gray), activates the intracellular kinase domains, (3) triggering intermolecular autophosphorylation (kinase domain: cyan) and subsequent transphosphorylation of substrates. (4) Upon dimer dissociation, phosphorylated kinase monomers amplify the signal and remain active until (5) dephosphorylation by the Mtb Ser/Thr protein phosphatase, PstP, regenerates the inactive, unphosphorylated monomer. Structure 2010 18, 1667-1677DOI: (10.1016/j.str.2010.09.019) Copyright © 2010 Elsevier Ltd Terms and Conditions