Calcium Taste Avoidance in Drosophila

Slides:



Advertisements
Similar presentations
TIA-1 Self-Multimerization, Phase Separation, and Recruitment into Stress Granules Are Dynamically Regulated by Zn2+  Joseph B. Rayman, Kevin A. Karl,
Advertisements

Volume 26, Issue 23, Pages (December 2016)
Volume 92, Issue 6, Pages (December 2016)
Volume 61, Issue 4, Pages (February 2009)
Volume 78, Issue 3, Pages (May 2013)
Pinky Kain, Anupama Dahanukar  Neuron 
Independent, Reciprocal Neuromodulatory Control of Sweet and Bitter Taste Sensitivity during Starvation in Drosophila  Hidehiko K. Inagaki, Ketaki M.
Volume 48, Issue 2, Pages (October 2005)
Avoiding DEET through Insect Gustatory Receptors
Volume 23, Issue 6, Pages (March 2013)
Dopaminergic Modulation of Sucrose Acceptance Behavior in Drosophila
translin Is Required for Metabolic Regulation of Sleep
Volume 68, Issue 6, Pages (December 2010)
Daniel T. Babcock, Christian Landry, Michael J. Galko  Current Biology 
Volume 53, Issue 1, Pages (January 2007)
Volume 79, Issue 4, Pages (August 2013)
The Drosophila Female Aphrodisiac Pheromone Activates ppk23+ Sensory Neurons to Elicit Male Courtship Behavior  Hirofumi Toda, Xiaoliang Zhao, Barry J.
Volume 84, Issue 4, Pages (November 2014)
Volume 21, Issue 6, Pages e6 (June 2017)
Starvation-Induced Depotentiation of Bitter Taste in Drosophila
The Role of PPK26 in Drosophila Larval Mechanical Nociception
Circadian Pacemaker Neurons Transmit and Modulate Visual Information to Control a Rapid Behavioral Response  Esteban O. Mazzoni, Claude Desplan, Justin.
Representations of Taste Modality in the Drosophila Brain
Volume 18, Issue 3, Pages (January 2017)
Volume 48, Issue 6, Pages (December 2005)
Volume 49, Issue 2, Pages (January 2006)
Volume 135, Issue 3, Pages (October 2008)
The Basis of Food Texture Sensation in Drosophila
A Leptin Analog Locally Produced in the Brain Acts via a Conserved Neural Circuit to Modulate Obesity-Linked Behaviors in Drosophila  Jennifer Beshel,
Leslie R. Whitaker, Mickael Degoulet, Hitoshi Morikawa  Neuron 
Li E. Cheng, Wei Song, Loren L. Looger, Lily Yeh Jan, Yuh Nung Jan 
Dynamics of Learning-Related cAMP Signaling and Stimulus Integration in the Drosophila Olfactory Pathway  Seth M. Tomchik, Ronald L. Davis  Neuron  Volume.
Volume 24, Issue 17, Pages (September 2014)
Volume 23, Issue 13, Pages (July 2013)
A PDF/NPF Neuropeptide Signaling Circuitry of Male Drosophila melanogaster Controls Rival-Induced Prolonged Mating  Woo Jae Kim, Lily Yeh Jan, Yuh Nung.
The Molecular Basis of Sugar Sensing in Drosophila Larvae
Volume 28, Issue 5, Pages e3 (March 2018)
Volume 97, Issue 5, Pages e4 (March 2018)
A PDF/NPF Neuropeptide Signaling Circuitry of Male Drosophila melanogaster Controls Rival-Induced Prolonged Mating  Woo Jae Kim, Lily Yeh Jan, Yuh Nung.
Volume 66, Issue 3, Pages (May 2010)
Abhishek Chatterjee, Shintaro Tanoue, Jerry H. Houl, Paul E. Hardin 
Volume 61, Issue 6, Pages (March 2009)
A Taste Receptor Required for the Caffeine Response In Vivo
Volume 74, Issue 4, Pages (May 2012)
Volume 94, Issue 4, Pages e4 (May 2017)
Volume 49, Issue 2, Pages (January 2006)
Let-7-Complex MicroRNAs Regulate the Temporal Identity of Drosophila Mushroom Body Neurons via chinmo  Yen-Chi Wu, Ching-Huan Chen, Adam Mercer, Nicholas S.
A Hierarchy of Cell Intrinsic and Target-Derived Homeostatic Signaling
Volume 86, Issue 2, Pages (April 2015)
Clock and cycle Limit Starvation-Induced Sleep Loss in Drosophila
Samuel James Walker, Verónica María Corrales-Carvajal, Carlos Ribeiro 
Volume 27, Issue 20, Pages e3 (October 2017)
Bonnie Chu, Vincent Chui, Kevin Mann, Michael D. Gordon 
Volume 6, Issue 5, Pages (March 2014)
A Conserved Circadian Function for the Neurofibromatosis 1 Gene
Volume 27, Issue 18, Pages e4 (September 2017)
TIA-1 Self-Multimerization, Phase Separation, and Recruitment into Stress Granules Are Dynamically Regulated by Zn2+  Joseph B. Rayman, Kevin A. Karl,
Martin Häsemeyer, Nilay Yapici, Ulrike Heberlein, Barry J. Dickson 
Volume 68, Issue 5, Pages (December 2010)
Volume 25, Issue 22, Pages (November 2015)
Aging Specifically Impairs amnesiac-Dependent Memory in Drosophila
Piezo-like Gene Regulates Locomotion in Drosophila Larvae
Volume 23, Issue 6, Pages (May 2018)
Mechanism of Acetic Acid Gustatory Repulsion in Drosophila
Rab3 Dynamically Controls Protein Composition at Active Zones
Volume 13, Issue 12, Pages (December 2015)
Volume 28, Issue 6, Pages e3 (March 2018)
Shixing Zhang, Gregg Roman  Current Biology 
Volume 20, Issue 18, Pages (September 2010)
Shamik DasGupta, Scott Waddell  Current Biology 
Presentation transcript:

Calcium Taste Avoidance in Drosophila Youngseok Lee, Seeta Poudel, Yunjung Kim, Dhananjay Thakur, Craig Montell  Neuron  Volume 97, Issue 1, Pages 67-74.e4 (January 2018) DOI: 10.1016/j.neuron.2017.11.038 Copyright © 2017 Elsevier Inc. Terms and Conditions

Figure 1 Flies Avoid Ca2+ via ppk23 GRNs (A–D) Two-way choice taste assays for 50–70 flies/assay. (A) Preferences of control flies (w1118) to 2 mM sucrose alone versus 2 mM sucrose and the indicated concentrations of CaCl2. n = 4. (B) Preferences of control flies to 1 mM sucrose alone versus 5 mM sucrose and the indicated concentrations of CaCl2. n = 4. (C) Two-way choice assays after ablating different GRNs by UAS-hid under control of the indicated GAL4s. n = 4. (D) Effects of ablation of ppk23 GRNs (UAS-hid/ppk23-GAL4) on Ca2+avoidance. n = 4. (E–G) Assaying Ca2+-induced action potentials using tip recordings. (E) CaCl2 (50 mM)-induced action potential frequencies in control and UAS-hid/ppk23-GAL4 sensilla. n = 10–24. (F) Responses of L4 and S5 sensilla to different CaCl2 concentrations. n = 17–22. (G) Tip recordings from S5 and L4 sensilla using 0–50 mM CaCl2. (H–J) Effects of different salts on sucrose-induced action potentials in L4 and L6 sensilla. The pipets contained 50 mM sucrose and 0–50 mM salts: (H) CaCl2, (I) MgCl2, (J) NaCl. n ≥ 10. Error bars, SEMs. ANOVA tests with Scheffe’s post hoc analyses between control and ppk23-GRNs ablated sensilla. ∗p < 0.05, ∗∗p < 0.01. Neuron 2018 97, 67-74.e4DOI: (10.1016/j.neuron.2017.11.038) Copyright © 2017 Elsevier Inc. Terms and Conditions

Figure 2 Requirements for Three Irs for Rejecting Ca2+-Containing Food (A) Screening candidate chemoreceptors for defects in Ca2+ aversion. n = 4–12. (B) Dose-dependent avoidance of Ir mutants to Ca2+. n = 4. (C) Rescue of Ca2+ avoidance defects in Ir25a2 by expressing UAS-Ir25a using the indicated GAL4, or the Ir25a+ genomic transgene (gen. Ir25a). n = 5–12. (D) Rescue of Ca2+ avoidance deficits in Ir62a1 by expressing UAS-Ir62a using the indicated GAL4. n = 4. (E) Rescue of Ca2+ avoidance impairments in Ir76b1 by expressing UAS-Ir76b using the indicated GAL4. n = 5–13. Error bars represent SEMs. Asterisks in (A) and (B) indicate significant differences from controls (∗p < 0.05, ∗∗p < 0.01) using ANOVA with Scheffe’s post hoc test. The black and red asterisks in (C)–(E) indicate significant differences from the controls and mutants, respectively (∗p < 0.05, ∗∗p < 0.01), using ANOVA with Scheffe’s post hoc test. Neuron 2018 97, 67-74.e4DOI: (10.1016/j.neuron.2017.11.038) Copyright © 2017 Elsevier Inc. Terms and Conditions

Figure 3 Dependence on Ir25a, Ir62a, and Ir76b for Ca2+-Induced Action Potentials Tip recordings were performed in response to 50 mM CaCl2. (A–C) Mean responses of GRNs from sensilla from the indicated Ir mutants or the mutants expressing rescue transgenes. n=10–26. (A) Ir25a2 or the mutant expressing the genomic rescue transgene (g[Ir25a]) or the UAS-Ir25a rescue transgene under control of the ppk23-GAL4. (B) Ir62a1 or the mutant expressing the UAS-Ir62a rescue transgene under control of the indicated GAL4s. (C) Ir76b1 or the mutant expressing the UAS-Ir76b rescue transgene under control of the indicated GAL4s. (D) Representative traces showing Ca2+-induced action potentials from S5 sensilla. Error bars represent SEMs. The black and red asterisks indicate significant differences from the controls and the mutants, respectively (∗∗p < 0.01, ∗p < 0.05), using single-factor ANOVA with Scheffe’s post hoc test to compare two sets of data. Neuron 2018 97, 67-74.e4DOI: (10.1016/j.neuron.2017.11.038) Copyright © 2017 Elsevier Inc. Terms and Conditions

Figure 4 Labellar Expression of IR25a and Toxicity of High Ca2+ (A–O) Staining of labella from controls viewed by confocal microscopy. 3-D reconstructions generated by maximum transparency. Scale bars represent 25 μm. The area within the dashed squares in (A)–(C) is shown as higher magnification single images in Figures S3K–S3M. The area within the dashed squares in (M)–(O) is shown as single proximal images in Figures S4A–S4C. (A, D, G, J, and M) UAS-GFP expression driven by the indicated GAL4s. The signals were detected by anti-GFP staining (green). (B, E, H, K, and N) Anti-IR25a staining (red). (C, F, I, L, and O) Merged images of anti-GFP and anti-IR25 staining. (P and Q) Survival of control flies fed 100 mM fructose or 100 mM fructose mixed with (P) CaCl2 or (Q) MgCl2. n = 4–7. Error bars represent SEMs. The asterisks indicate significant differences from the fructose-only feeding (∗∗p < 0.01, ∗p < 0.05.) using single-factor ANOVA with Scheffe’s as a post hoc test to compare two sets of data. Neuron 2018 97, 67-74.e4DOI: (10.1016/j.neuron.2017.11.038) Copyright © 2017 Elsevier Inc. Terms and Conditions