Hao Yuan Kueh, Philipp Niethammer, Timothy J. Mitchison 

Slides:



Advertisements
Similar presentations
Volume 77, Issue 2, Pages (August 1999)
Advertisements

Jingkui Wang, Marc Lefranc, Quentin Thommen  Biophysical Journal 
Maryam Sayadi, Seiichiro Tanizaki, Michael Feig  Biophysical Journal 
Yinghao Wu, Barry Honig, Avinoam Ben-Shaul  Biophysical Journal 
Role of ATP-Hydrolysis in the Dynamics of a Single Actin Filament
Volume 104, Issue 8, Pages (April 2013)
Energy Generation in Mitochondria and Chloroplasts
Volume 90, Issue 7, Pages (April 2006)
Zhanghan Wu, Jianhua Xing  Biophysical Journal 
Volume 102, Issue 5, Pages (March 2012)
Kinetic Studies on Enzyme-Catalyzed Reactions: Oxidation of Glucose, Decomposition of Hydrogen Peroxide and Their Combination  Zhimin Tao, Ryan A. Raffel,
Xinran Lu, David K. Wood, John M. Higgins  Biophysical Journal 
Volume 108, Issue 1, Pages (January 2015)
Spatial Control of Biochemical Modification Cascades and Pathways
Volume 109, Issue 11, Pages (December 2015)
Santosh K. Dasika, Kalyan C. Vinnakota, Daniel A. Beard 
Volume 113, Issue 12, Pages (December 2017)
Volume 98, Issue 11, Pages (June 2010)
The Origin of Short Transcriptional Pauses
Volume 105, Issue 2, Pages (July 2013)
The Transfer Functions of Cardiac Tissue during Stochastic Pacing
Volume 104, Issue 5, Pages (March 2013)
Ranjan K. Dash, Feng Qi, Daniel A. Beard  Biophysical Journal 
Dynamical Scenarios for Chromosome Bi-orientation
Marek Nebyla, Michal Přibyl, Igor Schreiber  Biophysical Journal 
Reversible Phosphorylation Subserves Robust Circadian Rhythms by Creating a Switch in Inactivating the Positive Element  Zhang Cheng, Feng Liu, Xiao-Peng.
Mechanisms of Receptor/Coreceptor-Mediated Entry of Enveloped Viruses
Nessy Tania, John Condeelis, Leah Edelstein-Keshet  Biophysical Journal 
Volume 101, Issue 2, Pages (July 2011)
Michał Komorowski, Jacek Miękisz, Michael P.H. Stumpf 
Geometric Asymmetry Induces Upper Limit of Mitotic Spindle Size
Volume 79, Issue 2, Pages (August 2000)
Electronic Transport in DNA
Xiao-Han Li, Elizabeth Rhoades  Biophysical Journal 
Volume 100, Issue 5, Pages (March 2011)
Volume 80, Issue 5, Pages (May 2001)
Kenneth Tran, Nicolas P. Smith, Denis S. Loiselle, Edmund J. Crampin 
Francis D. Appling, Aaron L. Lucius, David A. Schneider 
Colocalization of Multiple DNA Loci: A Physical Mechanism
Arijit Maitra, Ken A. Dill  Biophysical Journal 
Volume 96, Issue 6, Pages (March 2009)
Florian Hinzpeter, Ulrich Gerland, Filipe Tostevin  Biophysical Journal 
Volume 98, Issue 1, Pages 1-11 (January 2010)
Volume 105, Issue 1, Pages (July 2013)
Intracellular Encoding of Spatiotemporal Guidance Cues in a Self-Organizing Signaling System for Chemotaxis in Dictyostelium Cells  Tatsuo Shibata, Masatoshi.
Compartment-Specific Feedback Loop and Regulated Trafficking Can Result in Sustained Activation of Ras at the Golgi  Narat J. Eungdamrong, Ravi Iyengar 
Volume 113, Issue 7, Pages (October 2017)
A Chemically Reversible Brownian Motor: Application to Kinesin and Ncd
Sonia Cortassa, Brian O'Rourke, Raimond L. Winslow, Miguel A. Aon 
Volume 97, Issue 9, Pages (November 2009)
Mathematical Modeling of the Heat-Shock Response in HeLa Cells
Volume 97, Issue 12, Pages (December 2009)
Theodore R. Rieger, Richard I. Morimoto, Vassily Hatzimanikatis 
Rikiya Watanabe, Makoto Genda, Yasuyuki Kato-Yamada, Hiroyuki Noji 
Philip J. Robinson, Teresa J.T. Pinheiro  Biophysical Journal 
Andrew E. Blanchard, Chen Liao, Ting Lu  Biophysical Journal 
Phosphatase Specificity and Pathway Insulation in Signaling Networks
Ranjan K. Dash, Feng Qi, Daniel A. Beard  Biophysical Journal 
Hao Yuan Kueh, Philipp Niethammer, Timothy J. Mitchison 
Félix Proulx-Giraldeau, Thomas J. Rademaker, Paul François 
Jason N. Bazil, Daniel A. Beard, Kalyan C. Vinnakota 
Christina Karatzaferi, Marc K. Chinn, Roger Cooke  Biophysical Journal 
Yongli Zhang, Junyi Jiao, Aleksander A. Rebane  Biophysical Journal 
Mathematical Modeling of Mitochondrial Adenine Nucleotide Translocase
Ping Liu, Ioannis G. Kevrekidis, Stanislav Y. Shvartsman 
Volume 98, Issue 7, Pages (April 2010)
Malin Persson, Elina Bengtsson, Lasse ten Siethoff, Alf Månsson 
Volume 104, Issue 2, Pages (January 2013)
Volume 101, Issue 9, Pages (November 2011)
Torque Transmission Mechanism via DELSEED Loop of F1-ATPase
Presentation transcript:

Maintenance of Mitochondrial Oxygen Homeostasis by Cosubstrate Compensation  Hao Yuan Kueh, Philipp Niethammer, Timothy J. Mitchison  Biophysical Journal  Volume 104, Issue 6, Pages 1338-1348 (March 2013) DOI: 10.1016/j.bpj.2013.01.030 Copyright © 2013 Biophysical Society Terms and Conditions

Figure 1 CSC robustly maintains oxygen consumption rate constancy in a minimal ETC. (A) Schematic of a mitochondrial respiratory system. (Gray box) Mitochondrial ETC, where electrons (e−) are transferred through a series of carriers to molecular oxygen (O2). (Red box) Oxidative phosphorylation machinery that drives the production of ATP from ADP. (B) Single-carrier ETC. C0, oxidized carrier; C1, reduced carrier; E0, enzyme catalyzing electron transfer from the carrier to oxygen; E1, enzyme catalyzing electron transfer from upstream donors to the carrier. Electron transfer into the ETC from upstream donors (e−) is implicit in the rate of E1. (C) Numerical simulation showing the response of the single-carrier ETC to a series of step drops in oxygen levels. Plots show oxygen levels ([O2], top), oxygen consumption rate as a percentage of maximum (bottom) and fraction of reduced carrier (c1 = [C1]/CT, bottom) over time. (D) Steady-state normalized oxygen consumption rate and reduced carrier levels as a function of [O2]. (Gray areas) Region of oxygen saturation ([O2] > KM0). Parameters used: k0 = 10 s−1, KM0 = 30 μM, k1 = 2 mM s−1, KM1 = 0.1 mM, and CT = 8 mM. (E) Heat map showing κM = KMETC/KM0 plotted as a function of the dimensionless parameters α and β. CSC occurs where κM << 1 (blue). (Gray circle) Point in (α, β) space corresponding to simulation parameters. Biophysical Journal 2013 104, 1338-1348DOI: (10.1016/j.bpj.2013.01.030) Copyright © 2013 Biophysical Society Terms and Conditions

Figure 2 CSC generalizes to a wide range of electron transfer reaction mechanisms. (A) Generalized functional forms for carrier oxidation rate v0 (solid lines, from Eq. 17) and carrier reduction rate v1 (dashed line, from Eq. 16), plotted as a function of reduced carrier levels. The following parameters were used: e0a= 4, D0a = 50, D0b = 1, D0c = 0.5, D0e = 1, e1a = 1, e1b = 0.1, D1a = 0.3, and D1c = 1. All other parameters were set to zero. The value v0 is plotted at saturating oxygen levels ([O2] → ∞), at [O2] = KM0, or at [O2] = KMETC. The intersection between v1 and the different curves for v0 gives the steady-state of the ETC at a given oxygen level. C1∞ indicates the level of reduced carrier at saturating oxygen levels, whereas C1CSC indicates the level of reduced carrier at [O2] = KMETC. (B) Steady-state oxygen consumption rate as a function of oxygen level derived from carrier oxidation and reduction curves in panel A (dashed line); or for the corresponding system where reduced carrier levels are held constant at C1∞ (solid line). Here, KM0=77.7μM, and KMETC=2.7μM. Biophysical Journal 2013 104, 1338-1348DOI: (10.1016/j.bpj.2013.01.030) Copyright © 2013 Biophysical Society Terms and Conditions

Figure 3 CSC in multicarrier ETC models. (A) Two-carrier ETC model. The values C0 and C1 represent oxidized and reduced forms of the downstream carrier, whereas D0 and D1 represent oxidized and reduced forms of the upstream carrier. (B) Steady-state normalized oxygen consumption rate and fractions of reduced carriers D and C for the two-carrier ETC, plotted as a function of oxygen concentration. (Shaded areas) Region [O2] > KM0, where oxygen saturation occurs. Parameter values: k0 = 400 s−1, KM0 = 20 μM, k1 = 20 mM−1 s−1, k′2 = 5 s−1, CT = 5 mM, and DT = 10 mM. A description of model parameters is given in Appendix S4 in the Supporting Material. (C) Mitochondrial ETC with cyclical CoQ transfer reactions. (C) Cytochrome c; Qo and Qi represent CoQ bound to sites o and i of complex III, respectively; Qf represents unbound CoQ; N represents NAD/NADH; and subscripts denote carrier reduction state. The values v0–v9 represent reaction velocities (see Eqs. S65–S74 in the Supporting Material). A mathematical description and analysis of this model can be found in Appendix S5 in the Supporting Material. Biophysical Journal 2013 104, 1338-1348DOI: (10.1016/j.bpj.2013.01.030) Copyright © 2013 Biophysical Society Terms and Conditions

Figure 4 CSC constitutes a major control strategy for oxygen homeostasis in an in silico mitochondrial respiratory system. (A) Simplified model diagram, showing the ETC (top) and the coupled ATP/ADP-dependent reactions (bottom). (B) Steady-state normalized oxygen consumption rate (top, solid line), reduced cytochrome c fraction (middle, solid line), NADH fraction (middle, dashed line), ADP/ATP ratio (bottom, solid line), and mitochondrial membrane potential (ΔΨ, bottom, dashed line), plotted as a function of oxygen concentration. Parameters describing active respiration were used (41). KMETC gives the effective Michaelis-Menten constant of the system for oxygen, while KM0 gives the Michaelis-Menten constant of cytochrome c oxidase for oxygen. (Shaded areas) Region [O2] > KM0. Also shown is oxygen consumption rate as a function of oxygen levels for an equivalent system with ADP/ATP levels fixed to remove feedback regulation (top, dashed line). KM'ETC gives the effective Michaelis-Menten constant for this no-feedback system. (C and D) Effects of limiting electron supply or switching to a resting energy state on CSC and ADP/ATP feedback regulation: VmaxETC (top) and KMETC (middle) are plotted against (C) the NADH dehydrogenase velocity constant xDH, or (D) external ADP level [ADPe]). VmaxETC and KMETC are also plotted against each other (bottom) for (C) varying xDH, or (D) varying [ADPe]. Simulations were performed on either the full system (circles, solid lines), or on an equivalent no-feedback system (crosses, dotted lines). Biophysical Journal 2013 104, 1338-1348DOI: (10.1016/j.bpj.2013.01.030) Copyright © 2013 Biophysical Society Terms and Conditions

Biophysical Journal 2013 104, 1338-1348DOI: (10. 1016/j. bpj. 2013. 01 Copyright © 2013 Biophysical Society Terms and Conditions

Biophysical Journal 2013 104, 1338-1348DOI: (10. 1016/j. bpj. 2013. 01 Copyright © 2013 Biophysical Society Terms and Conditions

Biophysical Journal 2013 104, 1338-1348DOI: (10. 1016/j. bpj. 2013. 01 Copyright © 2013 Biophysical Society Terms and Conditions