Professor Ronald L. Carter

Slides:



Advertisements
Similar presentations
EE 5340 Semiconductor Device Theory Lecture 18 – Spring 2011 Professor Ronald L. Carter
Advertisements

L28 April 281 EE5342 – Semiconductor Device Modeling and Characterization Lecture 28 - Spring 2005 Professor Ronald L. Carter
L14 March 31 EE5342 – Semiconductor Device Modeling and Characterization Lecture 14 - Spring 2005 Professor Ronald L. Carter
L30 May 61 EE5342 – Semiconductor Device Modeling and Characterization Lecture 30 - Spring 2004 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 21 – Spring 2011
L11 February 241 EE5342 – Semiconductor Device Modeling and Characterization Lecture 11 - Spring 2004 Professor Ronald L. Carter
Semiconductor Device Modeling and Characterization – EE5342 Lecture 22 – Spring 2011 Professor Ronald L. Carter
L27 23Apr021 Semiconductor Device Modeling and Characterization EE5342, Lecture 27 -Sp 2002 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 19 – Spring 2011 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 22 - Fall 2010
L19 March 291 EE5342 – Semiconductor Device Modeling and Characterization Lecture 19 - Spring 2005 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 22 – Spring 2011 Professor Ronald L. Carter
L17 March 221 EE5342 – Semiconductor Device Modeling and Characterization Lecture 17 - Spring 2005 Professor Ronald L. Carter
Professor Ronald L. Carter
Chapter 4 DC Biasing–BJTs
Recall Lecture 10 Introduction to BJT 3 modes of operation
EKT104 ANALOG ELECTRONIC CIRCUITS [LITAR ELEKTRONIK ANALOG] BASIC BJT AMPLIFIER (PART I) DR NIK ADILAH HANIN BINTI ZAHRI
Lecture 10 Bipolar Junction Transistor (BJT)
Bipolar Junction Diode & DC Mr. Zeeshan Ali, Asst. Professor
Chapter 4 Bipolar Junction Transistor
TRANSISTOR.
Professor Ronald L. Carter
Professor Ronald L. Carter
Introduction to BJT Amplifier
The Currents of a BJT The collector current. The base Current.
Chapter 1 – Revision Part 2
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 19 – Spring 2011
Professor Ronald L. Carter
Recall Lecture 10 DC analysis of BJT
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 18 – Spring 2011
EE 5340 Semiconductor Device Theory Lecture 22 – Spring 2011
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Recall Lecture 10 Introduction to BJT 3 modes of operation
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Semiconductor Device Modeling & Characterization Lecture 15
Professor Ronald L. Carter
Semiconductor Device Modeling & Characterization Lecture 19
EE 5340 Semiconductor Device Theory Lecture 17 - Fall 2003
Professor Ronald L. Carter
ChapTer FoUr DC BIASING - BIPOLAR JUNCTION TRANSISTORS (BJTs)
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Semiconductor Device Modeling & Characterization Lecture 18
Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 17 – Spring 2011
Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 20 - Fall 2010
Chapter 5 Bipolar Junction Transistors
Presentation transcript:

Professor Ronald L. Carter ronc@uta.edu http://www.uta.edu/ronc/ Semiconductor Device Modeling and Characterization – EE5342 Lecture 23 – Spring 2011 Professor Ronald L. Carter ronc@uta.edu http://www.uta.edu/ronc/

Linking current E-M circuit model ©rlc L23-01Apr2011

E-M model equations ©rlc L23-01Apr2011

The npn Gummel-Poon Static Model RC ICC - IEC = IS(exp(vBE/NFVt - exp(vBC/NRVt)/QB B RBB ILC IBR B’ ILE IBF RE E ©rlc L23-01Apr2011

Gummel Poon npn Model Equations IBF = ISexpf(vBE/NFVt)/BF ILE = ISEexpf(vBE/NEVt) IBR = ISexpf(vBC/NRVt)/BR ILC = ISCexpf(vBC/NCVt) QB = (1 + vBC/VAF + vBE/VAR )  {½ + [¼ + (BFIBF/IKF + BRIBR/IKR)]1/2 } ©rlc L23-01Apr2011

Common emitter current gain, bF ©rlc L23-01Apr2011

Recombination/Gen Currents (FA) ©rlc L23-01Apr2011

BJT Characterization Forward Gummel iC RC iB RE RB vBEx vBC vBE + - vBCx= 0 = vBC + iBRB - iCRC vBEx = vBE +iBRB +(iB+iC)RE iB = IBF + ILE = ISexpf(vBE/NFVt)/BF + ISEexpf(vBE/NEVt) iC = bFIBF/QB = ISexpf(vBE/NFVt)/QB ©rlc L23-01Apr2011

Ideal F-G Data iC and iB (A) vs. vBE (V) N = 1  1/slope = 59.5 mV/dec ©rlc L23-01Apr2011

BJT Characterization Reverse Gummel iE RC iB RE RB vBCx vBC vBE + - vBEx= 0 = vBE + iBRB - iERE vBCx = vBC +iBRB +(iB+iE)RC iB = IBR + ILC = ISexpf(vBC/NRVt)/BR + ISCexpf(vBC/NCVt) iE = bRIBR/QB = ISexpf(vBC/NRVt)/QB ©rlc L23-01Apr2011

Ideal R-G Data iE and iB (A) vs. vBE (V) N = 1  1/slope = 59.5 mV/dec ©rlc L23-01Apr2011

VAR Parameter Extraction (rEarly) iE = - IEC = (IS/QB)exp(vBC/NRVt), where ICC = 0, and QB-1 = (1-vBC/VAF-vBE/VAR ) {IKR terms }-1, so since vBE = vBC - vEC, VAR ~ iE/[iE/vBE]vBC iE iB vEC vBC 0.2 < vEC < 5.0 0.7 < vBC < 0.9 Reverse Active Operation ©rlc L23-01Apr2011

Reverse Early Data for VAR At a particular data point, an effective VAR value can be calculated VAReff = iE/[iE/vBE]vBC The most accurate is at vBE = 0 (why?) vBC = 0.85 V vBC = 0.75 V iE(A) vs. vEC (V) ©rlc L23-01Apr2011

Reverse Early VAR extraction VAReff = iE/[iE/vBE]vBC VAR was set at 200V for this data When vBE = 0 vBC = 0.75VAR=200.5 vBC = 0.85VAR=200.2 vBC = 0.75 V vBC = 0.85 V VAReff(V) vs. vEC (V) ©rlc L23-01Apr2011

VAF Parameter Extraction (fEarly) Forward Active Operation iC = ICC = (IS/QB)exp(vBE/NFVt), where ICE = 0, and QB-1 = (1-vBC/VAF-vBE/VAR )* {IKF terms }-1, so since vBC = vBE - vCE, VAF ~ iC/[iC/vBC]vBE iC iB vCE vBE 0.2 < vCE < 5.0 0.7 < vBE < 0.9 ©rlc L23-01Apr2011

Forward Early Data for VAF At a particular data point, an effective VAF value can be calculated VAFeff = iC/[iC/vBC]vBE The most accurate is at vBC = 0 (why?) vBE = 0.85 V vBE = 0.75 V iC(A) vs. vCE (V) ©rlc L23-01Apr2011

Forward Early VAf extraction VAFeff = iC/[iC/vBC]vBE VAF was set at 100V for this data When vBC = 0 vBE = 0.75VAF=101.2 vBE = 0.85VAF=101.0 vBE = 0.75 V vBE = 0.85 V VAFeff(V) vs. vCE (V) ©rlc L23-01Apr2011

BJT Characterization Forward Gummel vBCx= 0 = vBC + iBRB - iCRC vBEx = vBE +iBRB +(iB+iC)RE iB = IBF + ILE = ISexp(vBE/NFVt)/BF + ISEexpf(vBE/NEVt) iC = bFIBF/QB = ISexp(vBE/NFVt)  (1-vBC/VAF-vBE/VAR ) {IKF terms }-1 iC RC iB RE RB vBEx vBC vBE + - ©rlc L23-01Apr2011

Sample fg data for parameter extraction IS = 10f NF = 1 BF = 100 Ise = 10E-14 Ne = 2 Ikf = .1m Var = 200 Re = 1 Rb = 100 iC data iB data iC, iB vs. vBEext ©rlc L23-01Apr2011

Definitions of Neff and ISeff In a region where iC or iB is approxi-mately a single exponential term, then iC or iB ~ ISeffexp (vBEext /(NFeffVt) where Neff = {dvBEext/d[ln(i)]}/Vt, and ISeff = exp[ln(i) - vBEext/(NeffVt)] ©rlc L23-01Apr2011

Forward Gummel Data Sensitivities Region a - IKFIS, RB, RE, NF, VAR Region b - IS, NF, VAR, RB, RE Region c - IS/BF, NF, RB, RE Region d - IS/BF, NF Region e - ISE, NE vBCx = 0 c iC b d iB e iC(A),iB(A) vs. vBE(V) ©rlc L23-01Apr2011

Region (b) fg Data Sensitivities Region b - IS, NF, VAR, RB, RE iC = bFIBF/QB = ISexp(vBE/NFVt)  (1-vBC/VAF-vBE/VAR ){IKF terms }-1 ©rlc L23-01Apr2011

Region (e) fg Data Sensitivities Region e - ISE, NE iB = IBF + ILE = (IS/BF)expf(vBE/NFVt) + ISEexpf(vBE/NEVt) ©rlc L23-01Apr2011

Simple extraction of IS, ISE from data Data set used IS = 10f ISE = 10E-14 Flat ISeff for iC data = 9.99E-15 for 0.230 < vD < 0.255 Max ISeff value for iB data is 8.94E-14 for vD = 0.180 iC data iB data ISeff vs. vBEext ©rlc L23-01Apr2011

Simple extraction of NF, NE from fg data Data set used NF=1 NE=2 Flat Neff region from iC data = 1.00 for 0.195 < vD < 0.390 Max Neff value from iB data is 1.881 for 0.180 < vD < 0.181 iB data iC data NEeff vs. vBEext ©rlc L23-01Apr2011

Region (d) fg Data Sensitivities Region d - IS/BF, NF iB = IBF + ILE = (IS/BF)expf(vBE/NFVt) + ISEexpf(vBE/NEVt) ©rlc L23-01Apr2011

Simple extraction of BF from data Data set used BF = 100 Extraction gives max iC/iB = 92 for 0.50 V < vD < 0.51 V 2.42A < iD < 3.53A Minimum value of Neff =1 for slightly lower vD and iD iC/iB vs. iC ©rlc L23-01Apr2011

References 1 OrCAD PSpice A/D Manual, Version 9.1, November, 1999, OrCAD, Inc. 2 Semiconductor Device Modeling with SPICE, 2nd ed., by Massobrio and Antognetti, McGraw Hill, NY, 1993. * Semiconductor Physics & Devices, by Donald A. Neamen, Irwin, Chicago, 1997. ** Modeling the Bipolar Transistor, by Ian Getreau, Tektronix, Inc., (out of print). ©rlc L23-01Apr2011