Volume 52, Issue 5, Pages (December 2006)

Slides:



Advertisements
Similar presentations
Volume 70, Issue 4, Pages (May 2011)
Advertisements

Synaptic AMPA Receptor Exchange Maintains Bidirectional Plasticity
Volume 49, Issue 4, Pages (February 2006)
Volume 50, Issue 3, Pages (May 2006)
Rap2-JNK Removes Synaptic AMPA Receptors during Depotentiation
Efficient, Complete Deletion of Synaptic Proteins using CRISPR
APP Processing and Synaptic Function
Volume 54, Issue 6, Pages (June 2007)
Jason R. Chalifoux, Adam G. Carter  Neuron 
Volume 80, Issue 2, Pages (October 2013)
Volume 52, Issue 3, Pages (November 2006)
Volume 68, Issue 4, Pages (November 2010)
J.Julius Zhu, Yi Qin, Mingming Zhao, Linda Van Aelst, Roberto Malinow 
Rapid Synaptic Scaling Induced by Changes in Postsynaptic Firing
Daniel Meyer, Tobias Bonhoeffer, Volker Scheuss  Neuron 
Volume 78, Issue 1, Pages (April 2013)
Volume 80, Issue 4, Pages (November 2013)
Volume 74, Issue 6, Pages (June 2012)
Long-Term Depression of mGluR1 Signaling
Dopaminergic Stimulation of Local Protein Synthesis Enhances Surface Expression of GluR1 and Synaptic Transmission in Hippocampal Neurons  W. Bryan Smith,
Hiroshi Makino, Roberto Malinow  Neuron 
LTP Requires a Unique Postsynaptic SNARE Fusion Machinery
Volume 86, Issue 2, Pages (April 2015)
Volume 56, Issue 4, Pages (November 2007)
Volume 83, Issue 2, Pages (July 2014)
Volume 86, Issue 5, Pages (June 2015)
Andres Barria, Roberto Malinow  Neuron 
Jason Aoto, Christine I. Nam, Michael M. Poon, Pamela Ting, Lu Chen 
Hippocampus and Entorhinal Cortex Recruit Cholinergic and NMDA Receptors Separately to Generate Hippocampal Theta Oscillations  Zhenglin Gu, Georgia M.
Volume 11, Issue 12, Pages (June 2015)
The Retromer Supports AMPA Receptor Trafficking During LTP
Rebecca S. Jones, Reed C. Carroll, Scott Nawy  Neuron 
Volume 83, Issue 2, Pages (July 2014)
A Cooperative Mechanism Involving Ca2+-Permeable AMPA Receptors and Retrograde Activation of GABAB Receptors in Interpeduncular Nucleus Plasticity  Peter.
Volume 68, Issue 5, Pages (December 2010)
Carleton P. Goold, Roger A. Nicoll  Neuron 
Subcellular Dynamics of Type II PKA in Neurons
Subunit-Specific NMDA Receptor Trafficking to Synapses
Yu Tian Wang, David J. Linden  Neuron 
Volume 52, Issue 2, Pages (October 2006)
Volume 123, Issue 1, Pages (October 2005)
Serotonin Mediates Cross-Modal Reorganization of Cortical Circuits
Volume 77, Issue 6, Pages (March 2013)
Plasticity of Burst Firing Induced by Synergistic Activation of Metabotropic Glutamate and Acetylcholine Receptors  Shannon J. Moore, Donald C. Cooper,
Zhenglin Gu, Jerrel L. Yakel  Neuron 
Volume 57, Issue 2, Pages (January 2008)
Volume 59, Issue 1, Pages (July 2008)
Volume 131, Issue 1, Pages (October 2007)
Volume 13, Issue 7, Pages (November 2015)
Adenosine and ATP Link PCO2 to Cortical Excitability via pH
Volume 62, Issue 2, Pages (April 2009)
Bo Li, Ran-Sook Woo, Lin Mei, Roberto Malinow  Neuron 
Volume 73, Issue 5, Pages (March 2012)
Volume 65, Issue 3, Pages (February 2010)
PKA-GluA1 Coupling via AKAP5 Controls AMPA Receptor Phosphorylation and Cell- Surface Targeting during Bidirectional Homeostatic Plasticity  Graham H.
Volume 60, Issue 6, Pages (December 2008)
Michael Leitges, Judit Kovac, Markus Plomann, David J. Linden  Neuron 
Volume 51, Issue 4, Pages (August 2006)
Volume 61, Issue 1, Pages (January 2009)
Volume 78, Issue 3, Pages (May 2013)
Volume 58, Issue 5, Pages (June 2008)
Subunit-Specific Rules Governing AMPA Receptor Trafficking to Synapses in Hippocampal Pyramidal Neurons  Song-Hai Shi, Yasunori Hayashi, José A. Esteban,
Volume 39, Issue 2, Pages (July 2003)
Won Chan Oh, Laxmi Kumar Parajuli, Karen Zito  Cell Reports 
Volume 66, Issue 2, Pages (April 2010)
Arc/Arg3.1 Mediates Homeostatic Synaptic Scaling of AMPA Receptors
Volume 7, Issue 5, Pages (June 2014)
Volume 68, Issue 4, Pages (November 2010)
Volume 25, Issue 13, Pages e3 (December 2018)
Postsynaptic Complexin Controls AMPA Receptor Exocytosis during LTP
Presentation transcript:

Volume 52, Issue 5, Pages 831-843 (December 2006) AMPAR Removal Underlies Aβ-Induced Synaptic Depression and Dendritic Spine Loss  Helen Hsieh, Jannic Boehm, Chihiro Sato, Takeshi Iwatsubo, Taisuke Tomita, Sangram Sisodia, Roberto Malinow  Neuron  Volume 52, Issue 5, Pages 831-843 (December 2006) DOI: 10.1016/j.neuron.2006.10.035 Copyright © 2006 Elsevier Inc. Terms and Conditions

Figure 1 Aβ Reduces Spine Density (A) CA1 pyramidal cells cotransfected with EGFP and either APP or APP(MV) imaged with two-photon laser scanning microscopy (2PLSM). Scale: 10 μm. (B) CA1 pyramidal cells transfected with EGFP and incubated for 7 days in either vehicle (0.2% DMSO, 0.5 mM Tris), Aβ(1-42) (1 μM), or Aβ(42-1) (1 μM). (C) Overexpression of Aβ decreases spine density (spine density (sp/μm): EGFP: 0.7 ± 0.03, 53 dendrites, 5 cells; APP: 0.4 ± 0.02, 106 dendrites, 10 cells, p < 0.01; APP(MV): 0.6 ± 0.02, 114 dendrites, 10 cells, p = 0.2; APP versus APP(MV), p < 0.01). (D) Aβ(1-42) incubation for 7 days decreases spine density (spine density (sp/μm): control vehicle and Aβ(42-1) combined: 0.8 ± 0.04, 66 dendrites, 8 cells, Aβ(1-42): 0.6 ± 0.05, 24 dendrites, 4 cells, p < 0.01). (E) Aβ overexpression depresses glutamatergic synaptic transmission (normalized to control (pA): AMPA: control: 1 ± 0.07(40 ± 3), APP: 0.6 ± 0.08(23 ± 3), n = 13, p < 0.01; NMDA: control: 1 ± 0.2(32 ± 8), APP: 0.5 ± 0.2(17 ± 5), n = 11, p < 0.01), while EGFP alone (AMPA: control: 1 ± 0.15(33 ± 5), EGFP: 1.3 ± 0.1(42 ± 5), n = 14 pairs, p = 0.4; NMDA: control: 1 ± 0.20(24.3 ± 4.8), EGFP: 13 ± 0.29(24.9 ± 7.0), n = 12, p = 0.4) or with APP(MV) do not depress transmission (AMPA: control: 1 ± 0.1(31 ± 2), APP(MV): 1 ± 0.1(29 ± 3), n = 20, p = 0.6; NMDA: control: 1 ± 0.3(12 ± 3); APP(MV): 1.1 ± 0.4(13 ± 5), n = 14, p = 0.7). Scale: 20 pA, 20 ms. p values from t test (spine density) and Wilcoxon test (EPSC). All data here and below are reported as mean ± standard error of the mean (SEM) and ∗∗p < 0.01, ∗p < 0.05. Neuron 2006 52, 831-843DOI: (10.1016/j.neuron.2006.10.035) Copyright © 2006 Elsevier Inc. Terms and Conditions

Figure 2 Aβ-Induced Synaptic Depression Partially Mimics and Occludes mGluR Long-Term Depression (A) Normalized EPSC amplitudes plotted against time from pairs of uninfected (○) and β-CTF (♦) infected CA1 pyramidal neurons during baseline and after LTD induction (100 μM DHPG, 5 min). Baseline and 35–40 min data are summarized on the right. Baseline AMPA currents (normalized to control (pA): 1 ± 0.08(82.7 ± 7.0), β-CTF: 0.6 ± 0.1(53 ± 10), n = 14, p < 0.01). After DHPG (normalized to control baseline (pA): control: 0.3 ± 0.04(22 ± 3), β-CTF: 0.3 ± 0.1(20 ± 2), n = 9, p = 0.6). Scale: 10 pA, 20 ms. (B) Aβ-induced depression of NMDA currents occludes mGluR-dependent LTD. Without DHPG (AMPA: control: 1 ± 0.2(44 ± 6), β-CTF: 0.5 ± 0.1 (22 ± 4), n = 16, p < 0.01; NMDA: control: 1 ± 0.1(29 ± 3), β-CTF: 0.8 ± 0.1(23 ± 3), n = 15, p < 0.01). After 5 min of 100 μM DHPG (AMPA: control: 1 ± 0.1(26 ± 4), β-CTF: 1.1 ± 0.2(29 ± 5), n = 17, p = 0.8; NMDA: control 1 ± 0.3(5 ± 2), β-CTF: 1.3 ± 0.3(7 ± 2), n = 16, p = 0.2). (C) APLP2/APP construct does not affect mGluR LTD induction (AMPA: control: 1 ± 0.1(47 ± 6), APLP2/APP: 0.9 ± 0.1(41 ± 5), n = 17, p = 0.3; NMDA: control: 1 ± 0.2(25 ± 4), APLP2/APP: 0.9 ± 0.1(22 ± 3), n = 13, p = 0.08) and after 5 min of 100 μM DHPG (AMPA: control: 1 ± 0.2(37 ± 6), APLP2/APP: 0.9 ± 0.1(34 ± 5), n = 13, p = 0.3; NMDA: control: 1 ± 0.3(36 ± 9), APLP2/APP: 1.1 ± 0.30(39 ± 11), n = 12, p = 0.8). All p values from Wilcoxon test. Scale: 20 pA, 20 ms. Error bars indicate SEM. Neuron 2006 52, 831-843DOI: (10.1016/j.neuron.2006.10.035) Copyright © 2006 Elsevier Inc. Terms and Conditions

Figure 3 Aβ-Induced Synaptic Depression Requires p38 MAPK and Calcineurin Activity (A) AMPA and NMDA EPSCs recorded from pairs of noninfected or APP-infected CA1 pyramidal neurons. Slices maintained in culture with vehicle (normalized to control (pA): AMPA: control: 1 ± 0.1(42 ± 3), APP: 0.6 ± 0.1(27 ± 2), n = 22, p < 0.01; NMDA: control: 1 ± 0.1(42 ± 6), APP: 0.6 ± 0.1(27 ± 5), n = 19, p < 0.01), p38 MAPK inhibitor, SB203580 (2 μM) (AMPA: control: 1 ± 0.1(37 ± 3), APP: 0.9 ± 0.1(33 ± 3), n = 19, p = 0.14; NMDA: control: 1 ± 0.1(16 ± 2), APP: 12 ± 0.2(16 ± 3), n = 19, p = 0.9), calcineurin inhibitor, FK506 (50 μM) (AMPA: control: 1 ± 0.2(37 ± 6), APP: 1.2 ± 0.1 (45 ± 4) n = 9, p = 0.2; NMDA: control: 1 ± 0.1 (25 ± 3), APP: 1 ± 0.2(25 ± 5), n = 9, p = 0.95) or JNK inhibitor, SP600125 (5 μM) (AMPA: control: 1 ± 0.2(58 ± 12), APP: 0.5 ± 0.1(30 ± 5), n = 11, p = 0.01; NMDA: control: 1 ± 0.2(48 ± 8), APP: 0.6 ± 0.1 (31 ± 6), n = 11, p < 0.01). p values from Wilcoxon test. Scale: 20 pA, 20 ms. (B) Results with cells expressing β-CTF (vehicle: AMPA: control: 1 ± 0.2(44 ± 6), β-CTF: 0.5 ± 0.1 (22 ± 4), n = 16, p < 0.01; NMDA: control: 1 ± 0.1 (29 ± 3), β-CTF: 0.78 ± 0.1(23 ± 3), n = 15, p < 0.01; SB203580: AMPA: control: 1 ± 0.14(29 ± 4), β-CTF: 0.9 ± 0.2(28 ± 5), n = 16, p = 0.4; NMDA: control: 1 ± 0.1 (11 ± 6), β-CTF: 15 ± 0.2(11 ± 2), n = 15, p = 0.6, FK506: AMPA: control: 1 ± 0.2(32 ± 6), β-CTF: 11 ± 0.1(33 ± 5), n = 11, p = 0.6; NMDA: control: 1 ± 0.3(23 ± 7), β-CTF: 1 ± 0.2(23 ± 5), n = 10, p = 0.8). p values from Wilcoxon test. Scale: 20 pA, 20 ms. (C and D) Incubation of transgenic APPSwe mouse hippocampal slices with p38 MAPK inhibitor (SB203580) does not affect Aβ40 or Aβ42 secretion (in pM: vehicle: Aβ40: 2900 ± 160, Aβ42: 190 ± 13; SB203580: Aβ40: 3100 ± 100, p = 0.2, Aβ42: 200 ± 9, p = 0.3, n = 4 for each condition), while calcineurin/PP2B inhibitor (FK506) slightly decreases Aβ40 and increases Aβ42 secretion (in pM: vehicle: Aβ40: 3300 ± 200, Aβ42: 160 ± 10; FK506: Aβ40: 2600 ± 200, p = 0.04, Aβ42: 290 ± 20, p < 0.01, n = 9 for each condition). A γ-secretase inhibitor (L-685,458, 2 μM) decreases Aβ40 levels (in pM: for SB203580 trial: Aβ40: 1800 ± 130, p < 0.01, Aβ42: 180 ± 6, p = 0.2; for FK506 trial: Aβ40: 2000 ± 200, p < 0.001, Aβ42: 180 ± 9, p = 0.5). p values from t test. (E) Sample traces of mEPSCs recorded in vehicle, p38 MAPK inhibitor (SB203580), and calcineurin/PP2B inhibitor (FK506). Scale: 20 pA, 0.25 s. (F and G) p38 MAPK inhibitor (SB203580) increases mEPSC frequency, while calcineurin/PP2B inhibitor (FK506) increases mEPSC frequency and amplitude (frequency (Hz): vehicle: 0.2 ± 0.02, n = 16, SB203580: 0.3 ± 0.03, n = 16, p = 0.01, FK506: 0.3 ± 0.03, n = 16, p < 0.01) (mEPSC amplitude (pA): vehicle: 14 ± 0.5, n = 16, SB203580: 16 ± 0.7, n = 16, p = 0.07, FK506: 17 ± 1, n = 16, p < 0.01). p values from t test. Error bars indicate SEM. Neuron 2006 52, 831-843DOI: (10.1016/j.neuron.2006.10.035) Copyright © 2006 Elsevier Inc. Terms and Conditions

Figure 4 Aβ Reduces Surface GluR2 and GluR1 (A) 2PLSM images of neurons coexpressing GluR2 tagged with Super-ecliptic pHluorin (SEP-GluR2), T1dimer, and APP or APP(MV). Note reduced surface SEP-GluR2 in cells expressing APP. Scale: 1 μm. (B) 2PLSM images of neurons coexpressing GluR1 tagged with Super-ecliptic pHluorin (SEP-GluR1), T1dimer, and APP or APP(MV). Note reduced surface SEP-GluR1 in cells expressing APP. Scale: 1 μm. (C) The surface SEP-GluR2 (green signal) normalized by volume (red signal) (Green/Normalized Red) in spines and dendrites is decreased in APP coexpressing neurons compared to SEP-GluR2 expression alone or with APP(MV) (spines: SEP-GluR2: 46000 ± 930, n = 1046 spines, APP/SEP-GluR2: 17000 ± 400, n = 482 spines, compare to SEP-GluR2: p < 0.01; dendrite: SEP-GluR2: 14800 ± 460, n = 1046 boxes, 4 cells, APP/SEP-GluR2: 4400 ± 160, n = 482 boxes, compare to SEP-GluR2: p < 0.01, 5 cells; APP(MV)/SEP-GluR2: spines: 37000 ± 1500, n = 554 spines, compare to APP/SEP-GluR2: p < 0.01, dendrites: 14000 ± 700, n = 554 boxes, compare to APP/SEP-GluR2: p < 0.01, 5 cells). (D) The surface SEP-GluR1 normalized by volume (Green/Normalized Red) in spines and dendrites is decreased in APP coexpressing neurons compared to SEP-GluR1 expression alone or with APP(MV) (spines: SEP-GluR1: 37700 ± 1000, n = 512 spines, APP/SEP-GluR1: 27000 ± 1200, n = 315 spines, compare to SEP-GluR1: p < 0.01; dendrite: SEP-GluR1: 14000 ± 700, n = 512 boxes, 4 cells, APP/SEP-GluR1: 11000 ± 500, n = 315 boxes, compare to SEP-GluR1: p < 0.01, 5 cells; APP(MV)/SEP-GluR1: spines: 35000 ± 1100, n = 505 spines, compare to APP/SEP-GluR1: p < 0.01, dendrites: 16000 ± 790, n = 505 boxes, compare to APP/SEP-GluR1: p < 0.01). p values from t test. Error bars indicate SEM. Neuron 2006 52, 831-843DOI: (10.1016/j.neuron.2006.10.035) Copyright © 2006 Elsevier Inc. Terms and Conditions

Figure 5 Aβ Overexpression Decreases Synaptic GluR2 and Depresses Synaptic Transmission; GluR2(R845A) Blocks the Aβ-Induced Decrease in Synaptic GluR2 and Transmission (A) The GluR2(R607Q) mutant increases rectification (normalized to control: 1 ± 0.12, GluR2(R607Q): 2.2 ± 0.3, n = 12, p < 0.01), which is not different from APP(MV)/GluR2(R607Q) expressing neurons (control: 1 ± 0.04, APP(MV)/GluR2(R607Q): 2 ± 0.2, n = 18, p < 0.01; compare to GluR2(R607Q): p = 0.9). APP coexpression with GluR2(R607Q) decreases rectification (control: 1 ± 0.06, APP/GluR2(R607Q): 1.5 ± 0.1, n = 20, p < 0.01; compare to GluR2(R607Q): p = 0.035; compare to APP(MV)/GluR2(R607Q): p < 0.05). Overexpression of GluR2(R607Q;R845A) results in slightly increased rectification (control: 1 ± 0.05, GluR2(R607Q;R845A): 2.8 ± 0.3, n = 13, p < 0.01). Rectification of cells coexpressing GluR2(R607Q;R845A) with APP or APP(MV) is not statistically different from cells expressing receptor alone (control: 1 ± 0.05, APP/GluR2(R607Q;R845A): 3.2 ± 0.3, n = 13, p < 0.01, compare to GluR2(R607Q;R856A), p = 0.4, compare to APP(MV)/GluR2(R607Q;R845A), p = 0.6) (control: 1 ± 0.2, APP(MV)/GluR2(R607Q;R845A): 3 ± 0.3, n = 15, p < 0.01, compare to GluR2(R607Q;R845A), p = 0.8). p values from t test. (B) AMPA and NMDA EPSCs recorded simultaneously from pairs of untransfected and transfected neurons. Overexpression of GluR2(R607Q) alone or with APP(MV) does not affect synaptic transmission. (Normalized to control(pA): AMPA: control: 1 ± 0.2(33.2 ± 6.5), GluR2(R607Q): 13 ± 0.13(34 ± 4), n = 10, p = 0.6; NMDA: control: 1 ± 0.3(23 ± 6), GluR2(R607Q): 0.8 ± 0.2(19 ± 4), n = 9, p = 0.8)(AMPA: control: 1 ± 0.10(40 ± 4), APP(MV)/GluR2(R607Q): 1.2 ± 0.1(47 ± 4), n = 24, p = 0.6; NMDA: control: 1 ± 0.18(30 ± 5), APP(MV)/GluR2(R607Q): 0.8 ± 0.2(26 ± 5), n = 14, p = 0.06). APP coexpression with GluR2(R607Q) depresses synaptic transmission (AMPA: control: 1 ± 0.06(49 ± 3), APP/GluR2(R607Q): 0.6 ± 0.05(31 ± 3), n = 26, p < 0.01; NMDA: control: 1 ± 0.2(19 ± 4), APP/GluR2(R607Q): 0.6 ± 0.1(11 ± 2), n = 13, p < 0.01). GluR2(R607Q;R845A) expression alone potentiates AMPA, while not affecting NMDA EPSCs (AMPA: control: 1 ± 0.10(38 ± 4), GluR2(R607Q;R845A): 1.3 ± 0.1 (51 ± 5), n = 24, p < 0.01; NMDA: control: 1 ± 0.2(30 ± 5), GluR2(R607Q;R845A): 1 ± 0.2(28 ± 5), n = 13, p = 0.4). Coexpression with APP or APP(MV) does not significantly change synaptic transmission when compared to receptor alone (AMPA: control: 1 ± 0.1(36 ± 3), APP/GluR2(R607Q;R845A): 1.4 ± 0.1(50 ± 4), n = 28, p = 0.01; NMDA: control: 1 ± 0.2(28 ± 4), APP/GluR2(R607Q;R845A): 0.9 ± 0.1(25 ± 2), n = 14, p = 0.8) (AMPA: control: 1 ± 0.1(38 ± 3), APP(MV)/GluR2(R607Q;R845A): 1.3 ± 0.1 (48 ± 4), n = 21, p = 0.03; NMDA: control: 1 ± 0.4(15 ± 5), APP(MV)/GluR2(R607Q;R845A): 0.9 ± 0.3(13 ± 4), n = 6, p = 0.5). (C) Aβ application reduces synaptic GluR2(R607Q). Hippocampal CA1 neurons were infected with GluR2(R607Q) and slices subsequently treated with 2 μM Aβ(1-42) or Aβ(42-1). Rectification was measured from neighboring infected and noninfected cells. (Normalized rectification: Aβ(42-1): control: 1 ± 0.1, GluR2(R607Q): 1.4 ± 0.1; Aβ(1-42): control: 1 ± 0.1, GluR2(R607Q): 19 ± 0.1; each n = 10; p < 0.05). p values calculated with Wilcoxon test. Scale: 20 pA, 20 ms. Error bars indicate SEM. Neuron 2006 52, 831-843DOI: (10.1016/j.neuron.2006.10.035) Copyright © 2006 Elsevier Inc. Terms and Conditions

Figure 6 Expression of S880E Mutant of GluR2, which Drives Synaptic AMPA Receptor Endocytosis, Results in Depressed AMPA- and NMDA-Mediated Currents and Spine Loss (A) Apical dendrites expressing GluR2(R607Q) or GluR2(R607Q;S880E). Scale: 10 μm. (B) Overexpression of GluR2(R607Q;S880E) results in a decrease in spine density (GluR2(R607Q) (spines/μm): 0.78 ± 0.03, 43 dendrites, 6 cells, GluR2(R607Q;S880E): 0.66 ± 0.03, n = 63 dendrites, 6 cells, p = 0.01). p value calculated with t test. (C) Overexpression of GluR2(R607Q;S880E) depresses AMPA and NMDA EPSCs (normalized to control (pA): AMPA: control: 1 ± 0.1 (47 ± 5), GluR2(R607Q;S880E): 0.8± 0.1 (38 ± 5), n = 14, p = 0.01; NMDA: control: 1 ± 0.1(29 ± 4), GluR2(R607Q:S880E): 0.6 ± 0.1(17 ± 2), n = 13, p < 0.01). p values calculated with Wilcoxon test. Scale: 20 pA, 20 ms. Error bars indicate SEM. Neuron 2006 52, 831-843DOI: (10.1016/j.neuron.2006.10.035) Copyright © 2006 Elsevier Inc. Terms and Conditions

Figure 7 GluR2(R845A) Blocks Aβ-Induced Loss in Spine Number (A) Apical dendrites expressing indicated constructs (along with EGFP) were imaged with 2PLSM. Scale: 10 μm. (B) Coexpression of APP with GluR2(R607Q) decreases spine density when compared to GluR2(R607Q) expression alone (spine density (sp/μm): GluR2(R607Q): 0.65 ± 0.04, 32 dendrites; APP/GluR2(R607Q): 0.51 ± 0.05, 33 dendrites, 4 cells/construct, p = 0.036). When GluR2(R607Q;R845A) is coexpressed with APP, there is no difference in spine density when compared to GluR2(R607Q;R845A) expression alone (spine density (sp/μm): GluR2(R607Q;R845A): 0.73 ± 0.06, 27 dendrites; APP/GluR2(R607Q;R845A): 0.77 ± 0.05, 29 dendrites; 4 cells/construct, p = 0.6). p values calculated with t test. Error bars indicate SEM. Neuron 2006 52, 831-843DOI: (10.1016/j.neuron.2006.10.035) Copyright © 2006 Elsevier Inc. Terms and Conditions