IRRADI ATION TARGET g FACTOR WIDTH (mT)ΔH1/2 SIGNAL INTENSITY

Slides:



Advertisements
Similar presentations
BE 581 Lecture 3- Intro to MRI.
Advertisements

RF Pulse – generates a B 1 field that realigns the precessing spins in the low energy state In the case of a 90 o pulse the alignment is perpendicular.
Electron Spin Resonance (ESR) Spectroscopy
SPIN
The most important instrumental technique used by organic chemists to determine the structure of organic compounds. NMR spectroscopy helps to identify.
Algorithms of data processing and controlling experimental equipment Magnetic Resonance Spectroscopy Popov Timophey Komolkin Andrey, Sukharjevskiy Stanislav.
Phy100: Blackbody radiation
Maria Simanovskaia Raman-excited spin coherences in NV centers in diamond.
PBG CAVITY IN NV-DIAMOND FOR QUANTUM COMPUTING Team: John-Kwong Lee (Grad Student) Dr. Renu Tripathi (Post-Doc) Dr. Gaur Pati (Post-Doc) Supported By:
MARS flux simulations - update Sergei Striganov Fermilab June 3, 2009.
FT-NMR.
Problem # 2-3/4 A core-type transformer rated at 37.5 kVA, 2400 – 480 V, and 60 Hz has a core whose mean length is 1.07 m and whose cross-sectional area.
Electron Spin as a Probe for Structure Spin angular momentum interacts with external magnetic fields g e  e HS e and nuclear spins I m Hyperfine Interaction.
Time Projection Chamber for the R 3 B set-up Combination of detectors upstream (target) & downstream of the magnet  Improvement of A, Z & E * balances.
Basics Concepts Nuclear spins Magnetic field B 0 Energy Sensitivity The NMR transition Larmor Frequency Magnetic field B 1 The rotating frame A pulse!
N. Doshita, Yamagata Univ.1 The COMPASS polarized target for Drell-Yan physics Drell-Yan physics Informal International Workshop on Drell-Yan physics.
Designing High Power Single Frequency Fiber Lasers Dmitriy Churin Course OPTI
SPIN 2004 Oct. 14, 2004 W. Kim, S.S. Stepanyan, S. Woo, M. Rasulbaev, S. Jin (Kyungpook National University) S. Korea Polarization Measurements of the.
Requirements to RICH FEE Serguei Sadovsky IHEP, Protvino CBM meeting GSI, 10 March 2005.
Electron Spin Resonance Spectroscopy
■ TOF-PET Imaging t1 t2  d = c x  t /2 When  t = 300 ps ➔  d = 4.5 cm Timing resolution required for MPPC Timing resolution required for MPPC ≤ 200.
Radar equation review 1/19/10. Radar eq (Rayleigh scatter) The only variable is h, the pulse length Most radars have a range of h values. Rewrite the.
Solid Polarized Target Opportunities at JLab Possibilities for Future Experiments.
Quantitative Oxygen Imaging with Electron Paramagnetic/Spin Resonance Oxygen Imaging Howard Halpern.
Other Magnetic Nuclei than 1 H 2 H (Deuterium): I = 1; simplifies proton spectrum as H-D coupling is small X-CH 2 -CH 2 -CH 2 -COYX-CH 2 -CH 2 -CD 2 -COY.
Ekaterina Dikarov (Suhovoy ) Development of high sensitivity, high resolution ESR and its applications for studying solar cells.
Y. Kisselev PST05 conference Nov 05 1 PST05 Conference Microwave cavity for large COMPASS polarized target By: Y. Kisselev, J. Ball, G. Baum, N.
Problems on Magnetic Materials….
$100 $200 $300 $400 $500 $100 $200 $300 $400 $500 $100 $200 $300 $400 $500 $100 $200 $300 $400 $500 $100 $200 $300 $400 $500 $100 $200 $300.
Zeinab. T. Dehghani, A. Mizoguchi, H. Kanamori Department of Physics, Tokyo Institute of Technology Millimeter-Wave Spectroscopy of S 2 Cl 2 : A Candidate.
Polarized Proton Solid Target for RI beam experiments M. Hatano University of Tokyo H. Sakai University of Tokyo T. Uesaka CNS, University of Tokyo S.
Intensity.
Status of New TPC( Ⅱ ) Performance Study Yohei Nakatsugawa LEPS Meeting in Taiwan.
1 NMR Samples Types of NMR tubes Sample preparation.
MARS15 RESULTS FOR THE LBNE-BLIP IRRADIATION TEST LBNE-BLIP Irradiation Test Meeting Fermilab February 19, 2010 Nikolai Mokhov FermilabAccelerator Physics.
MW Spectroscopy of  -Alanine and a Search in Orion-KL Shiori Watanabe ( Kyoto Univ. JAPAN ), Satoshi Kubota, Kentarou Kawaguchi ( Okayama Univ. JAPAN.
PHYS 221 Recitation Kevin Ralphs Week 11. Quiz Question A slit of width 130 μm passes a plane wave of infrared radiation of wavelength 1020 nm to a screen.
Solenoids.
NMR Nuclear Magnetic Resonance Chapter 13. Proton Nuclear Spin States Two states have the same energy in the absence of a magnetic field Magnetic Field.
17th Crystal Ball Meeting
Magnetic Fields Due to Currents JH
The most important instrumental technique used by organic chemists to determine the structure of organic compounds. NMR spectroscopy helps to identify.
Announcements  Homework for tomorrow… (Ch. 22, Probs. 20, 30, & 31) CQ2: a) & c) 22.10: 43.2° 22.12: m 22.13: 7.9 x m  Office hours… MW 12:30-1:30.
Preliminary result of the target polarization 2004 Kaori Kondo COMPASS target team.
实验十四 紫外线灭菌  一、实验背景及目的:  灭菌是一种杀灭微生物的措施。紫外线灭菌 是物理灭菌因素之一。  1. 了解紫外线灭菌的原理;  2. 学习、掌握紫外线灭菌的方法。 版权所有 未经作者同意 请勿使用.
Mass Spectrometry(MS). What does the mass spectrometer tell us? Very accurate determination of molecular mass of small compounds (or more accurately the.
The reading is 7.38 mm. The reading is 7.72 mm.
10 mm is the same as... 1 cm. 20 mm is the same as... 2 cm.
输尿管软镜钬激光碎石术的体会 南华大学附属第二医院泌尿外科三区 钱 坤. 背 景  输尿管软镜作为一种新碎石手段,目前在部分医 院应用。其安全性、有效性得到一致的认可。  但是存在一些问题需要探讨:  手术适应症、禁忌症  影响碎石成功率的因素  手术并发症的防治.
ECE Diagnostic on the HSX Stellarator
Announcements Homework for tomorrow… Ch. 22, Probs. 30, 32, & 49
Future R&D: beta-beam Mats Lindroos Mats Lindroos.
Polarized solid Targets for AFTER
10.5 NOTES Avogadro Molar Volumes
Lecture 19 Maxwell equations E: electric field intensity
Anisotropy of collagen fibre alignment in bovine cartilage: comparison of polarised light microscopy and spatially resolved diffusion-tensor measurements 
NMR system for the frozen spin target to measure the polarisation
 .
Performance test of ACEM-detector (Aluminum Cathode Electron Multiplier) Marcus Palm AB-ATB-EA M. Palm, CERN.
Two-Plate Waveguide
C.2.10 Sample Questions.
C.2.8 Sample Questions.
Appendix I in your lab book
C.2.8 Sample Questions.
at the University of Alabama
Volume 78, Issue 1, Pages (January 2000)
Curve No Width of patch (W) Length of patch (L) RL Freq. Range
Improving NMR-spectra
Fig. 5 Fabrication of origami structures by two-side illuminations.
Presentation transcript:

IRRADI ATION TARGET g FACTOR WIDTH (mT)ΔH1/2 SIGNAL INTENSITY (/(Hm·G·√P·V) RELAXATION TIME(s) 1 CH2 2.0058 6.34 2.16×104 1.23×10-7 2 2.0084 7.62 1.07×105 1.53×10-7 3 2.0086 6.12 6.38×103 1.59×10-7

SWEEP WIDTH IRRADI ATION TARGET V (mm3) POWER (mW) CENTRAL FIELD (mT) MOD GAIN TIME CON.(SEC) FREQ. (GHz) 1 CD2 1×0.770 8 326.65 10 2.0 100 0.03 9.187 2 12.5 9.195 3 326.75 400 0.01

IRRADI ATION TARGE g FACTOR WIDTH (mT) ΔH1/2 SIGNAL INTENSITY (/(Hm·G·√P·V) RELAXATION TIME(s) 1 CD2 2.0095 3.76 1.72×104 3.03×10-7 2 2.0112 4.02 6.72×105 2.83×10-7 3 2.0106 3.59 4.19×103 3.18×10-7

微分信号 吸収信号 signal intensity signal intensity signal intensity Standard sample: CH2 (2.16±0.02)×1019spins/cc TARGET TEMP. (K) V (mm3) CENT. FIELD (mT) POWER (mW) SWEEP TIME MOD GAIN TIME CON.(SEC) FREQ. (GHz) CH2 77 3×0.581 326.68 3 10 2 20 0.03 9.198 294 335.07 1 0.79 5 9.443 微分信号 吸収信号 77K 77K signal intensity signal intensity magnetic field (mT) magnetic field (mT) signal intensity 294K signal intensity 294K magnetic field (mT) magnetic field (mT)

TARGET TEMP. (K) g FACTOR WIDTH (mT) ΔHpp SIGNAL INTENSITY (/(Hm·G·√P·V) RELAXATION TIME(s) CH2 77 2.0177 1.72 2.042×105 3.82×10-7 294 2.0135 0.83 6.151×104 7.92×10-7

N個の電子の共鳴  

IRRADI ATION TARGET 照射量 (e-/cm2) g FACTOR WIDTH (mT)ΔH1/2 SPIN DENSITY (spins/cc) RELAXATION TIME(s) 1 CH2 (3-7)×1014 2.0058 6.34 (1.02±0.05)×1019 1.23×10-7 2 4×1015 2.0084 7.62 (5.06±0.25)×1019 1.53×10-7 3 5×1014 2.0086 6.12 (3.02±0.16)×1018 1.59×10-7 CD2 2.0095 3.76 (8.12±0.41)×1018 3.03×10-7 2.0112 4.02 (3.18±0.16)×1019 2.83×10-7 2.0106 3.59 (1.98±0.10)×1018 3.18×10-7