Introduction to Scientific Computing II

Slides:



Advertisements
Similar presentations
Practical Course SC & V Free Boundary Value Problems Dr. Miriam Mehl Institut für Informatik Scientific Computing in Computer Science.
Advertisements

Practical Course SC & V More on Boundaries Dr. Miriam Mehl Institut für Informatik Schwerpunkt Wissenschaftliches Rechnen.
Institut für Informatik Scientific Computing in Computer Science Practical Course SC & V Time Discretisation Dr. Miriam Mehl.
Scientific Computing Lab Results Worksheet 3 Dr. Miriam Mehl Institut für Informatik Scientific Computing in Computer Science.
Optimization of thermal processes
Steepest Decent and Conjugate Gradients (CG). Solving of the linear equation system.
Modern iterative methods For basic iterative methods, converge linearly Modern iterative methods, converge faster –Krylov subspace method Steepest descent.
Jonathan Richard Shewchuk Reading Group Presention By David Cline
Lecture 2 Linear Variational Problems (Part II). Conjugate Gradient Algorithms for Linear Variational Problems in Hilbert Spaces 1.Introduction. Synopsis.
September 23, 2010Neural Networks Lecture 6: Perceptron Learning 1 Refresher: Perceptron Training Algorithm Algorithm Perceptron; Start with a randomly.
Advanced Topics in Optimization
Why Function Optimization ?
Implementation of Nonlinear Conjugate Gradient Method for MLP Matt Peterson ECE 539 December 10, 2001.
9 1 Performance Optimization. 9 2 Basic Optimization Algorithm p k - Search Direction  k - Learning Rate or.
ECE 530 – Analysis Techniques for Large-Scale Electrical Systems Prof. Hao Zhu Dept. of Electrical and Computer Engineering University of Illinois at Urbana-Champaign.
Computational Optimization
CS B553: A LGORITHMS FOR O PTIMIZATION AND L EARNING Gradient descent.
Introduction to Adaptive Digital Filters Algorithms
Introduction to Scientific Computing II From Gaussian Elimination to Multigrid – A Recapitulation Dr. Miriam Mehl.
CS 478 – Tools for Machine Learning and Data Mining Backpropagation.
CSE 245: Computer Aided Circuit Simulation and Verification Matrix Computations: Iterative Methods I Chung-Kuan Cheng.
Data Modeling Patrice Koehl Department of Biological Sciences National University of Singapore
Introduction to Scientific Computing II Multigrid Dr. Miriam Mehl Institut für Informatik Scientific Computing In Computer Science.
Introduction to Scientific Computing II Multigrid Dr. Miriam Mehl.
Introduction to Scientific Computing II
Final Exam Review CS479/679 Pattern Recognition Dr. George Bebis 1.
Gradient Methods In Optimization
Variations on Backpropagation.
Survey of unconstrained optimization gradient based algorithms
Machine learning optimization Usman Roshan. Machine learning Two components: – Modeling – Optimization Modeling – Generative: we assume a probabilistic.
Introduction to Scientific Computing II Molecular Dynamics – Algorithms Dr. Miriam Mehl Institut für Informatik Scientific Computing In Computer Science.
Scientific Computing Lab Results Worksheet 4 Dr. Miriam Mehl Institut für Informatik Scientific Computing in Computer Science.
Scientific Computing Lab Organization Dr. Miriam Mehl Institut für Informatik Scientific Computing in Computer Science.
ECE 530 – Analysis Techniques for Large-Scale Electrical Systems
Fall 2004 Backpropagation CS478 - Machine Learning.
Non-linear Minimization
Scientific Computing Lab
Scientific Computing Lab
Introduction to Scientific Computing II
Pressure Poisson Equation
Scientific Computing Lab
Outline Single neuron case: Nonlinear error correcting learning
Introduction to Scientific Computing II
Introduction to Scientific Computing II
Conjugate Gradient Method
Structure from Motion with Non-linear Least Squares
Instructor :Dr. Aamer Iqbal Bhatti
Practical Course SC & V Discretization II AVS Dr. Miriam Mehl
Introduction to Scientific Computing II
Introduction to Scientific Computing II
Introduction to Scientific Computing II
Introduction to Scientific Computing II
Introduction to Scientific Computing II
Introduction to Scientific Computing II
Introduction to Scientific Computing II
Introduction to Scientific Computing II
Introduction to Scientific Computing II
Scientific Computing Lab
Iterative Algorithm g = Af g : Vector of projection data
Scientific Computing Lab
Numerical Linear Algebra
Introduction to Scientific Computing II
Introduction to Scientific Computing II
Introduction to Scientific Computing II
Scientific Computing Lab
Spatial Discretisation
Performance Optimization
Nonlinear Conjugate Gradient Method for Supervised Training of MLP
Structure from Motion with Non-linear Least Squares
First-Order Methods.
Presentation transcript:

Introduction to Scientific Computing II Institut für Informatik Scientific Computing In Computer Science Introduction to Scientific Computing II Conjugate Gradient Method Dr. Miriam Mehl

Steepest Descent – Convergence Poisson with 5-point-stencil like Jacobi/GS

Steepest Descent – Convergence

Conjugate Gradients – Basic Idea solution of SLE minimization iterative one-dimensional minima no repeating search directions

Steepest Descent – Principle

Conjugate Gradients – Principle

CG – Algorithm

Steepest Descent – Example initial error after 1 iteration after 10 iterations

Conjugate Gradients – Example initial error after 1 iteration after 10 iterations

Conjugate Gradients – Example Error after 50 iterations (h=1/128)

Conjugate Gradients – Example h iterations sd iterations cg #unknowns 1/16 646 35 225 1/32 2,744 76 961 1/64 11,576 157 3,969 1/128 48,629 322 16,129

CG – Convergence Poisson with 5-point-stencil like SOR no parameter adjustment