Volume 25, Issue 3, Pages (May 2013)

Slides:



Advertisements
Similar presentations
Supplementary Figure 1s. Antipodal cells show active CDC::H2B:YFP signal in a three day emasculated female gametophyte. At this stage, three days following.
Advertisements

Deborah L. Berry, Eric H. Baehrecke  Cell 
Raquel V. Mendes, Gabriel G. Martins, Ana M. Cristovão, Leonor Saúde 
Volume 29, Issue 1, Pages (April 2014)
Volume 9, Issue 2, Pages (August 2005)
Volume 21, Issue 6, Pages (December 2011)
PIRL6 knockdown disrupts female gametogenesis.
Volume 13, Issue 5, Pages (March 2003)
Volume 29, Issue 4, Pages (May 2014)
Computer Simulations and Image Processing Reveal Length-Dependent Pulling Force as the Primary Mechanism for C. elegans Male Pronuclear Migration  Akatsuki.
Volume 14, Issue 6, Pages (June 2008)
Volume 35, Issue 2, Pages (October 2015)
Volume 21, Issue 15, Pages (August 2011)
Lacy J. Barton, Belinda S. Pinto, Lori L. Wallrath, Pamela K. Geyer 
Tjakko J. van Ham, David Kokel, Randall T. Peterson  Current Biology 
Volume 23, Issue 1, Pages (July 2012)
Volume 17, Issue 12, Pages (June 2007)
Volume 34, Issue 2, Pages (July 2015)
Volume 21, Issue 3, Pages (September 2011)
Annexin5 Is Essential for Pollen Development in Arabidopsis
Spatiotemporal Brassinosteroid Signaling and Antagonism with Auxin Pattern Stem Cell Dynamics in Arabidopsis Roots  Juthamas Chaiwanon, Zhi-Yong Wang 
Xiaochun Ge, Fang Chang, Hong Ma  Current Biology 
Volume 22, Issue 12, Pages (June 2012)
Transcriptional Activation of Arabidopsis Axis Patterning Genes WOX8/9 Links Zygote Polarity to Embryo Development  Minako Ueda, Zhongjuan Zhang, Thomas.
Volume 28, Issue 1, Pages (January 2014)
Naomi R. Stevens, Hélio Roque, Jordan W. Raff  Developmental Cell 
Hexin Tan, Wanqi Liang, Jianping Hu, Dabing Zhang  Developmental Cell 
Growth Arrest Failure, G1 Restriction Point Override, and S Phase Death of Sensory Precursor Cells in the Absence of Neurotrophin-3  Wael M ElShamy, Lena.
Volume 14, Issue 2, Pages (February 2008)
Volume 26, Issue 5, Pages (September 2013)
SCHIZORIZA Controls Tissue System Complexity in Plants
Overcoming Hybridization Barriers by the Secretion of the Maize Pollen Tube Attractant ZmEA1 from Arabidopsis Ovules  Mihaela L. Márton, Astrid Fastner,
Volume 25, Issue 3, Pages (May 2013)
Fat2 and Lar Define a Basally Localized Planar Signaling System Controlling Collective Cell Migration  Kari Barlan, Maureen Cetera, Sally Horne-Badovinac 
Jianjun Sun, Wu-Min Deng  Developmental Cell 
Volume 24, Issue 5, Pages (March 2013)
Volume 20, Issue 23, Pages (December 2010)
Volume 11, Issue 4, Pages (April 2012)
Volume 24, Issue 2, Pages (January 2014)
Volume 10, Issue 2, Pages (February 2006)
Boss/Sev Signaling from Germline to Soma Restricts Germline-Stem-Cell-Niche Formation in the Anterior Region of Drosophila Male Gonads  Yu Kitadate, Shuji.
Jungmook Lyu, Vicky Yamamoto, Wange Lu  Developmental Cell 
Three Cell Fusions during Double Fertilization
Volume 9, Issue 4, Pages (April 2016)
Volume 19, Issue 15, Pages (August 2009)
Katie S. Kindt, Gabriel Finch, Teresa Nicolson  Developmental Cell 
Xuehong Xu, Bruce E. Vogel  Current Biology 
Volume 19, Issue 17, Pages (September 2009)
Volume 21, Issue 6, Pages (March 2011)
Volume 18, Issue 1, Pages (January 2008)
Anne Pelissier, Jean-Paul Chauvin, Thomas Lecuit  Current Biology 
Volume 20, Issue 3, Pages (March 2011)
Volume 3, Issue 3, Pages (March 2013)
RPK1 and TOAD2 Are Two Receptor-like Kinases Redundantly Required for Arabidopsis Embryonic Pattern Formation  Michael D. Nodine, Ramin Yadegari, Frans.
Early Developmental Program Shapes Colony Morphology in Bacteria
Aljoscha Nern, Yan Zhu, S. Lawrence Zipursky  Neuron 
Volume 22, Issue 14, Pages (July 2012)
Julie E. Cooke, Hilary A. Kemp, Cecilia B. Moens  Current Biology 
Volume 15, Issue 3, Pages (September 2008)
Volume 25, Issue 3, Pages (May 2013)
Kristin M. Beale, Alexander R. Leydon, Mark A. Johnson  Current Biology 
Volume 23, Issue 11, Pages (June 2013)
Volume 23, Issue 17, Pages (September 2013)
Dawit Kidane, Peter L. Graumann  Cell 
The Spatiotemporal Limits of Developmental Erk Signaling
Volume 7, Issue 8, Pages (August 2014)
Volume 34, Issue 2, Pages (July 2015)
Toll-like Receptor Signaling Promotes Development and Function of Sensory Neurons Required for a C. elegans Pathogen-Avoidance Behavior  Julia P. Brandt,
Volume 13, Issue 2, Pages (August 2007)
Volume 18, Issue 18, Pages (September 2008)
Presentation transcript:

Volume 25, Issue 3, Pages 310-316 (May 2013) Ethylene Signaling Is Required for Synergid Degeneration and the Establishment of a Pollen Tube Block  Ronny Völz, Juliane Heydlauff, Dagmar Ripper, Ludwig von Lyncker, Rita Groß-Hardt  Developmental Cell  Volume 25, Issue 3, Pages 310-316 (May 2013) DOI: 10.1016/j.devcel.2013.04.001 Copyright © 2013 Elsevier Inc. Terms and Conditions

Developmental Cell 2013 25, 310-316DOI: (10.1016/j.devcel.2013.04.001) Copyright © 2013 Elsevier Inc. Terms and Conditions

Figure 1 ein3 eil1 Mutants Fail to Establish a Pollen Tube Block (A and B) CLSM of female wild-type (A) and ein3 eil1 (B) gametophytes. (C) Frequency of mature female gametophytes: wild-type (n = 142) and ein3 eil1 (n = 138). (D and E) Expression of FGR 7.0 in wild-type (D) and ein3 eil1 (E) female gametophytes. (F) Frequency of FGR 7.0 expression: wild-type (n = 323), ein3 eil1 (n = 374). (G–K) Cleared whole mounts of wild-type (G and J) and ein3 eil1 (H and K) seeds and frequency of ovules containing supernumerary pollen tubes (I): wild-type (n = 245) and ein3 eil1 (n = 274). (L) Frequency of synergid-containing seeds analyzed at the four-nucleate endosperm stage: wild-type × wild-type (n = 156), ein3 eil1 × wild-type (n = 157), wild-type × ein3 eil1 (n = 70), and ein3 eil1 × ein3 eil1 (n = 92). (M and N) Expression of FGR 7.0 in wild-type (M) and ein3 eil1 (N). (O) Frequency of nuclear-localized synergid fluorescence after fertilization: wild-type (n = 328) and ein3 eil1 (n = 320). (P and Q) Cleared whole mounts of wild-type (P) and DD2::EIN3_SRDX (Q). (R) Frequency of four independent DD2::EIN3_SRDX/− transgenic lines containing synergid nuclei after pollination with wild-type. Ovules were scored at the four-nucleate endosperm stage: wild-type (n = 172), EIN3_SRDX/−(1) (n = 108), EIN3_SRDX/−(2) (n = 106), EIN3_SRDX/−(3) (n = 141), EIN3_SRDX/−(4) (n = 142), and ein3 eil1 (n = 106). Black arrowhead points to pollen tube, arrow indicates synergid nucleus, asterisk shows egg cell in (A)–(E) or zygote nucleus in (G)–(Q), and white arrowhead points to central cell in (A)–(E) or endosperm nuclei in (G)–(Q). Scale bars, 25 μm (A, B, D, E, G, H, J, K, M, N, P, and Q) and 10 μm (insets in K and Q). Error bars, mean ± SEM. See also Figure S1. Developmental Cell 2013 25, 310-316DOI: (10.1016/j.devcel.2013.04.001) Copyright © 2013 Elsevier Inc. Terms and Conditions

Figure 2 PCD and Fertilization Are Uncoupled in ein3 eil1 Mutants (A) Pollen tube attraction in ein3 eil1 mutants. Wild-type and ein3 eil1 plants were pollinated with pollen of pLAT52::GUS-expressing plants. Ovules were analyzed 24 hr after pollination. (B–G) CLSM images of fertilized wild-type (B–D) and ein3 eil1 ovules (E–G). Two different layers (B and C and E and F, respectively) and the overlay (D and G) are shown. (H) Fertility of different crosses between wild-type and ein3 eil1 plants. (I and J) Expression of a paternally introgressed pAt5g40260::NLS_tdTomato reporter in wild-type (I) and ein3 eil1 seeds (J). (K) Frequencies of wild-type and ein3 eil1 expressing pAt5g40260::NLS_tdTomato in zygote and endosperm (red bar) or zygote only (blue bar). Gray bars indicate seeds without fluorescence signal (wild-type, n = 285; ein3 eil1, n = 282). White arrows point to persistent synergid nucleus. Asterisks indicate zygote nucleus. Black arrowheads show degenerating synergid. White arrowheads point to endosperm nucleus. Scale bars, 25 μm. Error bars, mean ± SEM. See also Figure S2. Developmental Cell 2013 25, 310-316DOI: (10.1016/j.devcel.2013.04.001) Copyright © 2013 Elsevier Inc. Terms and Conditions

Figure 3 Premature Ethylene Signaling Can Bypass the Fertilization Requirement for Synergid PCD (A and B) EIN3_YFP localization after pollination. Dark bar indicates EIN3_YFP in synergid, zygote, and endosperm nuclei in the presence of a paternally introgressed tdTomato as shown in (B). Light bar shows EIN3_YFP in synergid nuclei in the absence of tdTomato (n = 156). (C–E) Microinjection of FGR 7.0 ovules. Microinjection needle (red triangle) and ovule prior (C) and after (D) injection. (E) Microinjected ovule (yellow arrow) and noninjected ovule. (F–H) Cleared whole mounts of control- (F) and ACC-injected (G and H) female gametophytes 24 hr after microinjection, exhibiting deformed (G) or no synergid nuclei (H). (I) Frequencies of synergid defects (−ACC, n = 63; +ACC, n = 54). (J and K) Frequency of ctr1 synergid nuclei that differ in size (J) or are fragmented (K) (wild-type, n = 210; ctr1, n = 260). (L–P) CLSM of wild-type (L) and ctr1 female gametophytes (M–P). In ctr1 mutants, fragmented nuclei (M–O) and autofluorescing synergids (P) were observed. (N and O) Different optical sections of a magnification of (M). (Q–S) Frequencies of FGR 8.0 expression patterns in wild-type (light-gray bar, n = 180) and ctr1 (dark-gray bar, n = 216) female gametophytes. (Q) Nuclear localization of NLS_3×GFP in both synergids. (R and S) Defective nuclear localization of NLS_3×GFP in one (R) or both (S) synergids. White arrows point to synergid nucleus (sn). Yellow arrow shows microinjected ovule. Black arrowheads point to degenerating synergid. Asterisks indicate egg cell. White arrowheads show central cell nucleus. Scale bars, 25 μm (B, E–H, L, M, and P–S), 50 μm (C and D), and 12.5 μm (N and O). Error bars, mean ± SEM. See also Figure S3. Developmental Cell 2013 25, 310-316DOI: (10.1016/j.devcel.2013.04.001) Copyright © 2013 Elsevier Inc. Terms and Conditions

Figure 4 Reprogramming of Synergid Nuclei in ein3 eil1 Mutants (A and B) ein3 eil1 seeds (B) with two synergid-like nuclei in comparison to wild-type (A). (C) Frequency of ein3 eil1 ovules containing two synergid-like nuclei in the two-nucleate endosperm stage (2 ES) (n = 127) and four-nucleate endosperm stage (4 ES) (n = 157). (D) Frequency of ein3 eil1 seeds expressing the central cell marker pMEA::NLS_tdTomato (red bar, n = 218) and pAtrBohD::NLS_GUS (blue bar, n = 124) in synergid-derived nuclei. (E–H) Wild-type and ein3 eil1 ovules expressing endosperm reporter. (I–P) Dynamics of FGR 7.0 expression in wild-type (I–L) and ein3 eil1 seeds (M–P) 16 hr after manual self-pollination (start of observation = 0 min). Arrows point to synergid or synergid-derived nuclei. Asterisks indicate zygote nucleus. White arrowheads show central cell-derived endosperm nuclei. Scale bars, 25 μm. Error bars, mean ± SEM. See also Movie S1 and Table S1. Developmental Cell 2013 25, 310-316DOI: (10.1016/j.devcel.2013.04.001) Copyright © 2013 Elsevier Inc. Terms and Conditions