Chapter 13 Additional Topics in Regression Analysis

Slides:



Advertisements
Similar presentations
Week 13 November Three Mini-Lectures QMM 510 Fall 2014.
Advertisements

Multivariate Regression
Forecasting Using the Simple Linear Regression Model and Correlation
6-1 Introduction To Empirical Models 6-1 Introduction To Empirical Models.
Chapter 13 Additional Topics in Regression Analysis
1-1 Regression Models  Population Deterministic Regression Model Y i =  0 +  1 X i u Y i only depends on the value of X i and no other factor can affect.
Statistics for Managers Using Microsoft® Excel 5th Edition
Statistics for Managers Using Microsoft® Excel 5th Edition
Additional Topics in Regression Analysis
Pengujian Parameter Koefisien Korelasi Pertemuan 04 Matakuliah: I0174 – Analisis Regresi Tahun: Ganjil 2007/2008.
Chapter Topics Types of Regression Models
Statistical Analysis SC504/HS927 Spring Term 2008 Session 7: Week 23: 7 th March 2008 Complex independent variables and regression diagnostics.
Quantitative Business Analysis for Decision Making Simple Linear Regression.
Basic Business Statistics, 11e © 2009 Prentice-Hall, Inc. Chap 15-1 Chapter 15 Multiple Regression Model Building Basic Business Statistics 11 th Edition.
© 2000 Prentice-Hall, Inc. Chap Forecasting Using the Simple Linear Regression Model and Correlation.
Chapter 15: Model Building
Business Statistics - QBM117 Statistical inference for regression.
Chapter 7 Forecasting with Simple Regression
Introduction to Regression Analysis, Chapter 13,
Copyright ©2011 Pearson Education 15-1 Chapter 15 Multiple Regression Model Building Statistics for Managers using Microsoft Excel 6 th Global Edition.
Chapter 13 Additional Topics in Regression Analysis
Statistics for Managers Using Microsoft Excel, 4e © 2004 Prentice-Hall, Inc. Chap 12-1 Chapter 12 Simple Linear Regression Statistics for Managers Using.
Chapter 11 Simple Regression
Chapter 15 Multiple Regression
Copyright ©2011 Pearson Education, Inc. publishing as Prentice Hall 15-1 Chapter 15 Multiple Regression Model Building Statistics for Managers using Microsoft.
© 2004 Prentice-Hall, Inc.Chap 15-1 Basic Business Statistics (9 th Edition) Chapter 15 Multiple Regression Model Building.
What does it mean? The variance of the error term is not constant
OPIM 303-Lecture #8 Jose M. Cruz Assistant Professor.
12a - 1 © 2000 Prentice-Hall, Inc. Statistics Multiple Regression and Model Building Chapter 12 part I.
© 2003 Prentice-Hall, Inc.Chap 13-1 Basic Business Statistics (9 th Edition) Chapter 13 Simple Linear Regression.
1 1 Slide © 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole.
Chap 14-1 Statistics for Business and Economics, 6e © 2007 Pearson Education, Inc. Chapter 14 Additional Topics in Regression Analysis Statistics for Business.
Multiple Regression and Model Building Chapter 15 Copyright © 2014 by The McGraw-Hill Companies, Inc. All rights reserved.McGraw-Hill/Irwin.
Lecture 4 Introduction to Multiple Regression
Statistics for Managers Using Microsoft Excel, 4e © 2004 Prentice-Hall, Inc. Chap 14-1 Chapter 14 Multiple Regression Model Building Statistics for Managers.
Business Statistics: A Decision-Making Approach, 6e © 2005 Prentice- Hall, Inc. Chap 14-1 Business Statistics: A Decision-Making Approach 6 th Edition.
Residual Analysis Purposes –Examine Functional Form (Linear vs. Non- Linear Model) –Evaluate Violations of Assumptions Graphical Analysis of Residuals.
Lesson 14 - R Chapter 14 Review. Objectives Summarize the chapter Define the vocabulary used Complete all objectives Successfully answer any of the review.
Copyright © 2011 by The McGraw-Hill Companies, Inc. All rights reserved. McGraw-Hill/Irwin Simple Linear Regression Analysis Chapter 13.
Basic Business Statistics, 10e © 2006 Prentice-Hall, Inc. Chap 15-1 Chapter 15 Multiple Regression Model Building Basic Business Statistics 10 th Edition.
Statistics for Managers Using Microsoft Excel, 4e © 2004 Prentice-Hall, Inc. Chap 14-1 Chapter 14 Multiple Regression Model Building Statistics for Managers.
Lecturer: Ing. Martina Hanová, PhD.. Regression analysis Regression analysis is a tool for analyzing relationships between financial variables:  Identify.
Quantitative Methods Residual Analysis Multiple Linear Regression C.W. Jackson/B. K. Gordor.
Chapter 12 REGRESSION DIAGNOSTICS AND CANONICAL CORRELATION.
Yandell – Econ 216 Chap 15-1 Chapter 15 Multiple Regression Model Building.
Predicting Energy Consumption in Buildings using Multiple Linear Regression Introduction Linear regression is used to model energy consumption in buildings.
Chapter 8: Multiple Regression for Time Series
Chapter 13 Simple Linear Regression
Chapter 15 Multiple Regression Model Building
Chapter 15 Multiple Regression and Model Building
Inference for Least Squares Lines
Statistics for Managers using Microsoft Excel 3rd Edition
Kakhramon Yusupov June 15th, :30pm – 3:00pm Session 3
Multiple Regression Analysis and Model Building
Simple Linear Regression
Multivariate Regression
Chapter 12: Regression Diagnostics
Chapter 13 Simple Linear Regression
Chapter 15 Multiple Regression Analysis and Model Building
Slides by JOHN LOUCKS St. Edward’s University.
CHAPTER 29: Multiple Regression*
PENGOLAHAN DAN PENYAJIAN
BASIC REGRESSION CONCEPTS
Regression Forecasting and Model Building
BEC 30325: MANAGERIAL ECONOMICS
Checking Assumptions Primary Assumptions Secondary Assumptions
3.2. SIMPLE LINEAR REGRESSION
BEC 30325: MANAGERIAL ECONOMICS
Presentation transcript:

Chapter 13 Additional Topics in Regression Analysis Statistics for Business and Economics 7th Edition Chapter 13 Additional Topics in Regression Analysis Statistics for Business and Economics, 6e © 2007 Pearson Education, Inc.

Lagged Values of the Dependent Variable In time series models, data is collected over time (weekly, quarterly, etc…) The value of y in time period t is denoted yt The value of yt often depends on the value yt-1, as well as other independent variables xj : A lagged value of the dependent variable is included as an explanatory variable Statistics for Business and Economics, 6e © 2007 Pearson Education, Inc.

Specification Bias Suppose an important independent variable z is omitted from a regression model the least squares estimates of coefficients included in the model are usually biased If z is uncorrelated with all other included independent variables, the influence of z is left unexplained and is absorbed by the error term, ε But if there is any correlation between z and any of the included independent variables, some of the influence of z is captured in the coefficients of the included variables Statistics for Business and Economics, 6e © 2007 Pearson Education, Inc.

Specification Bias (continued) If some of the influence of omitted variable z is captured in the coefficients of the included independent variables, then those coefficients are biased… …and the usual inferential statements from hypothesis test or confidence intervals can be seriously misleading In addition the estimated model error will include the effect of the missing variable(s) and will be larger Example 13.5 (Pg: 559) Statistics for Business and Economics, 6e © 2007 Pearson Education, Inc.

Multicollinearity Collinearity: High correlation exists among two or more independent variables This means the correlated variables contribute redundant information to the multiple regression model Statistics for Business and Economics, 6e © 2007 Pearson Education, Inc.

Multicollinearity (continued) Including two highly correlated explanatory variables can adversely affect the regression results No new information provided Can lead to unstable coefficients (large standard error and low t-values) Coefficient signs may not match prior expectations Statistics for Business and Economics, 6e © 2007 Pearson Education, Inc.

Some Indications of Strong Multicollinearity Incorrect signs on the coefficients Large change in the value of a previous coefficient when a new variable is added to the model A previously significant variable becomes insignificant when a new independent variable is added The estimate of the standard deviation of the model increases when a variable is added to the model Statistics for Business and Economics, 6e © 2007 Pearson Education, Inc.

Detecting Multicollinearity Examine the simple correlation matrix to determine if strong correlation exists between any of the model independent variables Multicollinearity may be present if the model appears to explain the dependent variable well (high F statistic and low se ) but the individual coefficient t statistics are insignificant Statistics for Business and Economics, 6e © 2007 Pearson Education, Inc.

Assumptions of Regression Normality of Error Error values (ε) are normally distributed for any given value of X Homoscedasticity The probability distribution of the errors has constant variance Independence of Errors Error values are statistically independent Statistics for Business and Economics, 6e © 2007 Pearson Education, Inc.

Residual Analysis The residual for observation i, ei, is the difference between its observed and predicted value Check the assumptions of regression by examining the residuals Examine for linearity assumption Examine for constant variance for all levels of X (homoscedasticity) Evaluate normal distribution assumption Evaluate independence assumption Graphical Analysis of Residuals Can plot residuals vs. X Statistics for Business and Economics, 6e © 2007 Pearson Education, Inc.

Residual Analysis for Linearity x x x x residuals residuals  Not Linear Linear Statistics for Business and Economics, 6e © 2007 Pearson Education, Inc.

Residual Analysis for Homoscedasticity x x x x residuals residuals  Constant variance Non-constant variance Statistics for Business and Economics, 6e © 2007 Pearson Education, Inc.

Residual Analysis for Independence Not Independent  Independent X residuals X residuals X residuals Statistics for Business and Economics, 6e © 2007 Pearson Education, Inc.

Heteroscedasticity Homoscedasticity Heteroscedasticity The probability distribution of the errors has constant variance Heteroscedasticity The error terms do not all have the same variance The size of the error variances may depend on the size of the dependent variable value, for example When heteroscedasticity is present least squares is not the most efficient procedure to estimate regression coefficients The usual procedures for deriving confidence intervals and tests of hypotheses is not valid Statistics for Business and Economics, 6e © 2007 Pearson Education, Inc.

Autocorrelated Errors Independence of Errors Error values are statistically independent Autocorrelated Errors Residuals in one time period are related to residuals in another period Autocorrelation violates a least squares regression assumption Leads to sb estimates that are too small (i.e., biased) Thus t-values are too large and some variables may appear significant when they are not Statistics for Business and Economics, 6e © 2007 Pearson Education, Inc.

Autocorrelation Autocorrelation is correlation of the errors (residuals) over time Here, residuals show a cyclic pattern, not random Violates the regression assumption that residuals are random and independent Statistics for Business and Economics, 6e © 2007 Pearson Education, Inc.