Microarray analysis of differential gene expression in temporomandibular joint condylar cartilage after experimentally induced osteoarthritis  Juanhong.

Slides:



Advertisements
Similar presentations
Expression pattern differences between osteoarthritic chondrocytes and mesenchymal stem cells during chondrogenic differentiation  P. Bernstein, C. Sticht,
Advertisements

Osteoarthritis cartilage histopathology: grading and staging
Perlecan in late stages of osteoarthritis of the human knee joint
B. Bai, Y. Li  Osteoarthritis and Cartilage 
M. Fu, G. Huang, Z. Zhang, J. Liu, Z. Zhang, Z. Huang, B. Yu, F. Meng 
Effects of pleiotrophin, a heparin-binding growth factor, on human primary and immortalized chondrocytes  Dr. T. Pufe, Ph.D., G. Groth, M.B. Goldring,
Time-lapse observation of the dedifferentiation process in mouse chondrocytes using chondrocyte-specific reporters  Y. Minegishi, K. Hosokawa, N. Tsumaki 
Perlecan in late stages of osteoarthritis of the human knee joint
L. J. Sandell, Ph. D. , X. Xing, M. D. , C. Franz, M. A. , S
A bioinformatic analysis of microRNAs role in osteoarthritis
Effective reduction of the interleukin-1β transcript in osteoarthritis-prone guinea pig chondrocytes via short hairpin RNA mediated RNA interference influences.
Expression of superficial zone protein in mandibular condyle cartilage
C. Karlsson, T. Dehne, A. Lindahl, M. Brittberg, A. Pruss, M
D. N. Clements, B. Sc. , B. V. Sc. , S. D. Carter, Ph. D. , J. F
Combination of ADMSCs and chondrocytes reduces hypertrophy and improves the functional properties of osteoarthritic cartilage  M.R. Ahmed, A. Mehmood,
MicroRNA221-3p modulates Ets-1 expression in synovial fibroblasts from patients with osteoarthritis of temporomandibular joint  J. Xu, Y. Liu, M. Deng,
Identification of the pathogenic pathways in osteoarthritic hip cartilage: commonality and discord between hip and knee OA  Y. Xu, M.J. Barter, D.C. Swan,
Chondroitin-4-sulphate inhibits NF-kB translocation and caspase activation in collagen- induced arthritis in mice  G.M. Campo, Ph.D., A. Avenoso, Ph.D.,
Micromechanical mapping of early osteoarthritic changes in the pericellular matrix of human articular cartilage  R.E. Wilusz, S. Zauscher, F. Guilak 
Z. Zhang, Y. Kang, Z. Zhang, H. Zhang, X. Duan, J. Liu, X. Li, W. Liao 
Fibroblast Growth Factor 23 drives MMP13 expression in human osteoarthritic chondrocytes in a Klotho-independent manner  A. Bianchi, M. Guibert, F. Cailotto,
Analysis of early changes in the articular cartilage transcriptisome in the rat meniscal tear model of osteoarthritis: pathway comparisons with the rat.
Long-term NSAID treatment directly decreases COX-2 and mPGES-1 production in the articular cartilage of patients with osteoarthritis  M.A. Álvarez-Soria,
Next-generation Sequencing Identifies Articular Cartilage and Subchondral Bone Mirnas after ESWT on Early Osteoarthritis Knee  C.-J. Wang, J.-H. Cheng,
Gene expression and cell differentiation in matrix-associated chondrocyte transplantation grafts: a comparative study  C. Albrecht, B. Tichy, S. Nürnberger,
K. Kawakita, T. Nishiyama, T. Fujishiro, S. Hayashi, N. Kanzaki, S
C. -H. Chou, M. T. M. Lee, I. -W. Song, L. -S. Lu, H. -C. Shen, C. -H
Depletion of primary cilia in articular chondrocytes results in reduced Gli3 repressor to activator ratio, increased Hedgehog signaling, and symptoms.
Glucosamine promotes chondrogenic phenotype in both chondrocytes and mesenchymal stem cells and inhibits MMP-13 expression and matrix degradation  A.
T Pufe, M Bartscher, W Petersen, B Tillmann, R Mentlein 
Expression and regulation of Toll-like receptor 2 by IL-1β and fibronectin fragments in human articular chondrocytes  S.-L. Su, M.S., C.-D. Tsai, Ph.D.,
K. Fundel, Ph. D. , J. Haag, Ph. D. , P. M. Gebhard, M. Sc. , R
Characterization of mature vs aged rabbit articular cartilage: analysis of cell density, apoptosis-related gene expression and mechanisms controlling.
Suppression of early experimental osteoarthritis by in vivo delivery of the adenoviral vector-mediated NF-κBp65-specific siRNA  L.X. Chen, Ph.D., L. Lin,
C. Wu, J. Zheng, X. Yao, H. Shan, Y. Li, P. Xu, X. Guo 
Superficial zone chondrocytes in normal and osteoarthritic human articular cartilages synthesize novel truncated forms of inter-alpha-trypsin inhibitor.
DIO2 modifies inflammatory responses in chondrocytes
Characterization of pro-apoptotic and matrix-degradative gene expression following induction of osteoarthritis in mature and aged rabbits  Dr. C.M. Robertson,
Osteoarthritis year 2013 in review: genetics and genomics
Volume 23, Issue 8, Pages (August 2015)
Osteoarthritis cartilage histopathology: grading and staging
The BMP antagonists follistatin and gremlin in normal and early osteoarthritic cartilage: an immunohistochemical study  G. Tardif, Ph.D., J.-P. Pelletier,
Gene expression variation in human meniscus: molecular and clinical implications for cartilage homeostasis and early osteoarthritis development  M.F.
Different responses of healthy, relative healthy and OA chondrocytes with IL1β treatment under hypoxia and normoxia  X. Huang, L. Zhong, J. Post, M. Karperien 
The validity of in vivo ultrasonographic grading of osteoarthritic femoral condylar cartilage: a comparison with in vitro ultrasonographic and histologic.
Molecular differentiation between osteophytic and articular cartilage – clues for a transient and permanent chondrocyte phenotype  K. Gelse, A.B. Ekici,
Stage-specific differences in secretory profile of mesenchymal stromal cells (MSCs) subjected to early- vs late-stage OA synovial fluid  A. Gómez-Aristizábal,
Identification of differentially expressed genes in trabecular bone from the iliac crest of osteoarthritic patients  E. Sánchez-Sabaté, L. Alvarez, E.
Regulation of mechanical stress-induced MMP-13 and ADAMTS-5 expression by RUNX-2 transcriptional factor in SW1353 chondrocyte-like cells  T. Tetsunaga,
M.L. Roemhildt, A.E. Gauthier  Osteoarthritis and Cartilage 
W. Wang, T. Hayami, S. Kapila  Osteoarthritis and Cartilage 
Who should have a joint replacement? A plea for more ‘phronesis’
J.L. Huebner, J.M. Williams, M. Deberg, Y. Henrotin, V.B. Kraus 
Heinz-J. Hausser, Ph.D., Ralf Decking, M.D., Rolf E. Brenner, M.D. 
Differential transcriptome analysis of intraarticular lesional vs intact cartilage reveals new candidate genes in osteoarthritis pathophysiology  M. Geyer,
Increased chondrocyte sclerostin may protect against cartilage degradation in osteoarthritis  B.Y. Chan, E.S. Fuller, A.K. Russell, S.M. Smith, M.M. Smith,
R.H. Brophy, B. Zhang, L. Cai, R.W. Wright, L.J. Sandell, M.F. Rai 
L. De Franceschi, Ph. D. , L. Roseti, Ph. D. , G. Desando, Ph. D. , A
The validity of in vitro ultrasonographic grading of osteoarthritic femoral condylar cartilage – a comparison with histologic grading  C.-Y. Tsai, M.D.,
Comparative analysis of gene expression profiles between the normal human cartilage and the one with endemic osteoarthritis  W.Z. Wang, M.D., Ph.D., X.
Identification and analysis of a SMAD3 cis-acting eQTL operating in primary osteoarthritis and in the aneurysms and osteoarthritis syndrome  E.V.A. Raine,
Dynamic compression of single cells
Correlation between the MR T2 value at 4
Osteoarthritis year 2012 in review: biology
Knee cartilage defects in a sample of older adults: natural history, clinical significance and factors influencing change over 2.9 years  J. Carnes, O.
L. Xu, I. Polur, C. Lim, J.M. Servais, J. Dobeck, Y. Li, B.R. Olsen 
K. W. Marshall, M. D. , Ph. D. , F. R. C. S. (C), H. Zhang, M. D. , Ph
One-year increase of Coll 2-1, a new marker of type II collagen degradation, in urine is highly predictive of radiological OA progression  M.A. Deberg,
Expression of superficial zone protein in mandibular condyle cartilage
I. Gurkan, A. Ranganathan, X. Yang, W. E. Horton, M. Todman, J
Presentation transcript:

Microarray analysis of differential gene expression in temporomandibular joint condylar cartilage after experimentally induced osteoarthritis  Juanhong Meng, D.D.S., Ph.D., Xuchen Ma, D.D.S., Ph.D., Dalong Ma, Ph.D., Caimin Xu, B.Sc.  Osteoarthritis and Cartilage  Volume 13, Issue 12, Pages 1115-1125 (December 2005) DOI: 10.1016/j.joca.2005.03.010 Copyright © 2005 OsteoArthritis Research Society International Terms and Conditions

Fig. 1 Pathological examinations of MCCs postoperatively and normal controls. A, B: A smooth, intact superficial zone and no loss of proteoglycan staining in the mid- or deep zones are visible in normal adult cartilage. C, D: Cartilage at 4 weeks postoperatively showed swelling, superficial fibrillation and uneven proteoglycan staining. E, F: Cartilage at 12 weeks postoperatively showed extensive fibrillation, severely structural disorganization and extensive loss of proteoglycan staining throughout the mid- and deep zone. (A, C, E: hematoxylin–eosin staining ×100; B, D, F: toluidine blue staining ×100). Osteoarthritis and Cartilage 2005 13, 1115-1125DOI: (10.1016/j.joca.2005.03.010) Copyright © 2005 OsteoArthritis Research Society International Terms and Conditions

Fig. 2 Classification of molecular functions. The differentially expressed genes with a ≥2-fold change in the progression of OA were classified according to molecular functions of GO annotations. FatiGO extract GO terms annotated for these genes sorting by percentages (level=3). Percentages are calculated with respect to only those genes that have been GO annotated. Osteoarthritis and Cartilage 2005 13, 1115-1125DOI: (10.1016/j.joca.2005.03.010) Copyright © 2005 OsteoArthritis Research Society International Terms and Conditions

Fig. 3 Classification of biological processes. The differentially expressed genes with a ≥2-fold change in the progression of OA were classified according to the biological processes of GO annotations. FatiGO extract GO terms annotated for these genes sorting by percentages (level=3). Percentages are calculated with respect to only those genes that have been GO annotated. Osteoarthritis and Cartilage 2005 13, 1115-1125DOI: (10.1016/j.joca.2005.03.010) Copyright © 2005 OsteoArthritis Research Society International Terms and Conditions

Fig. 4 SOM clustering analysis. One hundred and thirty-eight differentially expressed genes were grouped into four clusters according to SOM clustering algorithm. X- and Y-axes represent time point and relative expression levels, respectively. From left to right, the first point shows normal control values, the second point shows early-stage OA expression levels, and the final point shows late-stage OA expression levels. Each of the four clusters demonstrated a unique pattern of expression based on the similarity of the expression pattern of its constituent genes. The number of transcripts in each cluster is shown in parenthesis. Osteoarthritis and Cartilage 2005 13, 1115-1125DOI: (10.1016/j.joca.2005.03.010) Copyright © 2005 OsteoArthritis Research Society International Terms and Conditions

Fig. 5 Quantitative real-time RT-PCR analysis. Real-time RT-PCR analysis of the selected differentially expressed genes from the microarray results, and assays were performed in triplicate for each gene. Data are presented as fold changes when comparing osteoarthric cartilage vs normal cartilage. CO: normal control. EOA: early-stage osteoarthritic cartilage. LOA: late-stage osteoarthritic cartilage. Values represent means with error bars. *P<0.05. Osteoarthritis and Cartilage 2005 13, 1115-1125DOI: (10.1016/j.joca.2005.03.010) Copyright © 2005 OsteoArthritis Research Society International Terms and Conditions