Volume 20, Issue 6, Pages (June 2012)

Slides:



Advertisements
Similar presentations
Recognizing Protein-Ligand Binding Sites by Global Structural Alignment and Local Geometry Refinement Ambrish Roy, Yang Zhang Structure Volume 20, Issue.
Advertisements

Volume 19, Issue 8, Pages (August 2011)
Prediction of Protein Structure and Function on a Proteomic Scale
Volume 14, Issue 2, Pages (February 2006)
Nir London, Ora Schueler-Furman  Structure 
Identification of Structural Mechanisms of HIV-1 Protease Specificity Using Computational Peptide Docking: Implications for Drug Resistance  Sidhartha.
Hahnbeom Park, Frank DiMaio, David Baker  Structure 
Volume 16, Issue 5, Pages (May 2008)
Lionel Costenaro, J. Günter Grossmann, Christine Ebel, Anthony Maxwell 
Srayanta Mukherjee, Yang Zhang  Structure 
Chen-Chou Wu, William J. Rice, David L. Stokes  Structure 
Volume 19, Issue 9, Pages (September 2011)
AnchorDock: Blind and Flexible Anchor-Driven Peptide Docking
Volume 19, Issue 7, Pages (July 2011)
Volume 25, Issue 3, Pages (March 2017)
Yang Liu, Perry Palmedo, Qing Ye, Bonnie Berger, Jian Peng 
HyeongJun Kim, Jen Hsin, Yanxin Liu, Paul R. Selvin, Klaus Schulten 
From Shellfish Poisoning to Neuroscience
Volume 24, Issue 1, Pages (January 2016)
Monika Sharma, Alexander V. Predeus, Nicholas Kovacs, Michael Feig 
Volume 23, Issue 12, Pages (December 2015)
Phospho-Pon Binding-Mediated Fine-Tuning of Plk1 Activity
Volume 26, Issue 3, Pages e2 (March 2018)
Volume 26, Issue 3, Pages e2 (March 2018)
Grace W. Tang, Russ B. Altman  Structure 
Volume 22, Issue 6, Pages (June 2014)
Volume 26, Issue 7, Pages e2 (July 2018)
XLF Regulates Filament Architecture of the XRCC4·Ligase IV Complex
Volume 128, Issue 6, Pages (March 2007)
Supertertiary Structure of the MAGUK Core from PSD-95
Srayanta Mukherjee, Yang Zhang  Structure 
GPCR-I-TASSER: A Hybrid Approach to G Protein-Coupled Receptor Structure Modeling and the Application to the Human Genome  Jian Zhang, Jianyi Yang, Richard.
Daniel Hoersch, Tanja Kortemme  Structure 
Volume 20, Issue 3, Pages (March 2012)
Ligand Binding to the Voltage-Gated Kv1
Volume 25, Issue 12, Pages e2 (December 2017)
Volume 14, Issue 5, Pages (May 2006)
Fan Zheng, Jian Zhang, Gevorg Grigoryan  Structure 
Volume 21, Issue 6, Pages (June 2013)
Nir London, Ora Schueler-Furman  Structure 
Recognizing Protein Substructure Similarity Using Segmental Threading
Biochemical Implications of a Three-Dimensional Model of Monomeric Actin Bound to Magnesium-Chelated ATP  Keiji Takamoto, J.K. Amisha Kamal, Mark R. Chance 
Volume 20, Issue 10, Pages (October 2012)
Volume 19, Issue 8, Pages (August 2011)
Protein-Protein Docking: From Interaction to Interactome
The Structural Basis of Peptide-Protein Binding Strategies
Volume 14, Issue 2, Pages (February 2006)
A Self-Sequestered Calmodulin-like Ca2+ Sensor of Mitochondrial SCaMC Carrier and Its Implication to Ca2+-Dependent ATP-Mg/Pi Transport  Qin Yang, Sven.
A Critical Comparative Assessment of Predictions of Protein-Binding Sites for Biologically Relevant Organic Compounds  Ke Chen, Marcin J. Mizianty, Jianzhao.
Atomic-Level Protein Structure Refinement Using Fragment-Guided Molecular Dynamics Conformation Sampling  Jian Zhang, Yu Liang, Yang Zhang  Structure 
Yan Xia, Axel W. Fischer, Pedro Teixeira, Brian Weiner, Jens Meiler 
Reduced Curvature of Ligand-Binding Domain Free-Energy Surface Underlies Partial Agonism at NMDA Receptors  Jian Dai, Huan-Xiang Zhou  Structure  Volume.
Volume 17, Issue 8, Pages (August 2009)
Structural Insight into AMPK Regulation: ADP Comes into Play
Volume 24, Issue 1, Pages (January 2016)
Structural Insight into BLM Recognition by TopBP1
Vilas Menon, Brinda K. Vallat, Joseph M. Dybas, Andras Fiser  Structure 
Hafumi Nishi, Kosuke Hashimoto, Anna R. Panchenko  Structure 
Volume 23, Issue 4, Pages (April 2015)
Damian Dawidowski, David S. Cafiso  Structure 
Volume 27, Issue 7, Pages e5 (July 2019)
Gydo C.P. van Zundert, Adrien S.J. Melquiond, Alexandre M.J.J. Bonvin 
Suvobrata Chakravarty, Roberto Sanchez  Structure 
Fine Details of IGF-1R Activation, Inhibition, and Asymmetry Determined by Associated Hydrogen /Deuterium-Exchange and Peptide Mass Mapping  Damian Houde,
Peter Man-Un Ung, Rayees Rahman, Avner Schlessinger 
High-Resolution Comparative Modeling with RosettaCM
Miklos Guttman, Patrick Weinkam, Andrej Sali, Kelly K. Lee  Structure 
Yang Zhang, Jeffrey Skolnick  Biophysical Journal 
M-TASSER: An Algorithm for Protein Quaternary Structure Prediction
Volume 24, Issue 10, Pages (October 2016)
Presentation transcript:

Volume 20, Issue 6, Pages 987-997 (June 2012) Recognizing Protein-Ligand Binding Sites by Global Structural Alignment and Local Geometry Refinement  Ambrish Roy, Yang Zhang  Structure  Volume 20, Issue 6, Pages 987-997 (June 2012) DOI: 10.1016/j.str.2012.03.009 Copyright © 2012 Elsevier Ltd Terms and Conditions

Structure 2012 20, 987-997DOI: (10.1016/j.str.2012.03.009) Copyright © 2012 Elsevier Ltd Terms and Conditions

Figure 1 COFACTOR Protocol for Ligand Binding Site Prediction See also Figure S1. Structure 2012 20, 987-997DOI: (10.1016/j.str.2012.03.009) Copyright © 2012 Elsevier Ltd Terms and Conditions

Figure 2 Comparison of Different Methods in Identifying Ligand Binding Pocket Using Either I-TASSER Models or Experimental Structures Results are presented as the cumulative fraction of predicted binding site pockets versus distance between the center of the native ligand position and the center of the best in top five predicted ligand-binding poses. See also Table S1. Structure 2012 20, 987-997DOI: (10.1016/j.str.2012.03.009) Copyright © 2012 Elsevier Ltd Terms and Conditions

Figure 3 Performance of Different Methods in Detecting Ligand Interacting Residues (A and B) The data are shown using cumulative data of average Matthews's correlation coefficient (MCC) (A), and average precision of predicted binding sites (B). Structure 2012 20, 987-997DOI: (10.1016/j.str.2012.03.009) Copyright © 2012 Elsevier Ltd Terms and Conditions

Figure 4 COFACTOR Ligand-Binding Predictions for Natural Ligands and Drug-like Compounds (A) Cumulative data of Matthews's correlation coefficient (MCC) of predicted ligand interacting residues as a function of the fraction of binding sites. (B) Chemical similarity between the native bound ligands and the predicted ligands assessed using cumulative average of Tanimoto coefficient (TC). For both analyses, I-TASSER models are used as the apo receptor structure. Structure 2012 20, 987-997DOI: (10.1016/j.str.2012.03.009) Copyright © 2012 Elsevier Ltd Terms and Conditions

Figure 5 Distribution of MCC of Predicted Binding Residues as a Function of Prediction Confidence Score The histogram shows the mean MCC of predicted binding site residues and the error bar represents SD. Structure 2012 20, 987-997DOI: (10.1016/j.str.2012.03.009) Copyright © 2012 Elsevier Ltd Terms and Conditions

Figure 6 Examples of Successful Predictions by COFACTOR in CASP9 Models in (A) and (B) are from T0609 and T0518, respectively. Correctly predicted residues are shown in green (true positive), false positive predictions highlighted in red, and false negatives residues shown in yellow. The overall ranking results of all targets in CASP9 can be seen in Figure S3. Structure 2012 20, 987-997DOI: (10.1016/j.str.2012.03.009) Copyright © 2012 Elsevier Ltd Terms and Conditions

Figure 7 Influence of Local and Global Protein Structure Modeling on the Accuracy of Ligand Binding Site Predictions (A) Structural accuracy of ligand binding residues versus the accuracy of full-length receptor models. Ligand binding pocket predictions using higher resolution receptor models are shown in the inset. (B) Local versus global similarity of template to target structures. The local similarity is evaluated by BS-score (Equation 1), whereas global structural similarity is measured by TM-score of template and the I-TASSER model. In both the plots, the correct predictions with a distance error <4.5 Å by different methods are represented by different symbols. For clarity, data points of binding pockets for which either all the methods correctly identified the pocket (128 cases) or all the methods failed to identify the pocket (147cases) have been omitted. See also Figures S2 and S4. Structure 2012 20, 987-997DOI: (10.1016/j.str.2012.03.009) Copyright © 2012 Elsevier Ltd Terms and Conditions

Figure 8 A Representative Example of COFACTOR Binding-Site Prediction Based on Local Structural Comparisons Binding site residues of the carnitine CoA-transferase (PDB ID: 1xvtA) was detected using glucose-6-phosphate dehydrogenase (PDB ID: 2bh9A) as template with MCC of 56% and precision of 75%. The NAP binding site in N-terminal domain of 2bh9A (ligand shown in magenta) was used for the prediction. The overall TM-score of two structures is 0.36 (TM-score = 0.24 if only the binding domain of 1xvtA (4–330) and 2bh9A (27–199) is considered). The true positive residues are shown in green and false positive ones are in red. Inset shows that CoA (native ligand) and NAP (predicted ligand) have similar chemical structure (adenine and ribo-phosphate moiety shown in red). No local similarity was detected using the C-terminal NAP (shown in orange) binding site of template. Structure 2012 20, 987-997DOI: (10.1016/j.str.2012.03.009) Copyright © 2012 Elsevier Ltd Terms and Conditions