Volume 10, Issue 5, Pages (November 2011)

Slides:



Advertisements
Similar presentations
Love Thy Neighbor: Sharing and Cooperativity in the Gut Microbiota
Advertisements

IgA Response to Symbiotic Bacteria as a Mediator of Gut Homeostasis
Nicholas A. Bokulich, Martin J. Blaser  Cell Metabolism 
IgA Response to Symbiotic Bacteria as a Mediator of Gut Homeostasis
Infection-Induced Intestinal Oxidative Stress Triggers Organ-to-Organ Immunological Communication in Drosophila  Shih-Cheng Wu, Chih-Wei Liao, Rong-Long.
Message in a Biota: Gut Microbes Signal to the Circadian Clock
Volume 11, Issue 3, Pages (March 2012)
From Hype to Hope: The Gut Microbiota in Enteric Infectious Disease
Volume 138, Issue 4, Pages (August 2009)
Gut Microbes Make for Fattier Fish
Volume 20, Issue 4, Pages (October 2016)
Volume 11, Issue 2, Pages (August 2012)
Mucosal Glycan Foraging Enhances Fitness and Transmission of a Saccharolytic Human Gut Bacterial Symbiont  Eric C. Martens, Herbert C. Chiang, Jeffrey.
From Hype to Hope: The Gut Microbiota in Enteric Infectious Disease
Putting the Balance Back in Diet
Volume 19, Issue 2, Pages (February 2012)
Neutrophils Cause an Intravascular Traffic Jam
Volume 20, Issue 7, Pages (August 2017)
Volume 55, Issue 3, Pages (August 2007)
Luisa De Sordi, Varun Khanna, Laurent Debarbieux  Cell Host & Microbe 
Volume 16, Issue 6, Pages (December 2014)
Volume 17, Issue 5, Pages (May 2015)
Influenza Promotes Pneumococcal Growth during Coinfection by Providing Host Sialylated Substrates as a Nutrient Source  Steven J. Siegel, Aoife M. Roche,
A Subset of Polysaccharide Capsules in the Human Symbiont Bacteroides thetaiotaomicron Promote Increased Competitive Fitness in the Mouse Gut  Nathan.
Starving our Microbial Self: The Deleterious Consequences of a Diet Deficient in Microbiota-Accessible Carbohydrates  Erica D. Sonnenburg, Justin L. Sonnenburg 
Volume 141, Issue 7, Pages (June 2010)
Volume 11, Issue 4, Pages (April 2012)
Bentley Lim, Michael Zimmermann, Natasha A. Barry, Andrew L. Goodman 
Adam S. Dingens, Hugh K. Haddox, Julie Overbaugh, Jesse D. Bloom 
The Host Restriction Factor APOBEC3G and Retroviral Vif Protein Coevolve due to Ongoing Genetic Conflict  Alex A. Compton, Vanessa M. Hirsch, Michael.
Volume 37, Issue 6, Pages (March 2010)
Volume 16, Issue 7, Pages (July 2008)
Volume 20, Issue 6, Pages (December 2016)
Gut Microbes Make for Fattier Fish
Volume 64, Issue 6, Pages (December 2016)
Volume 5, Issue 6, Pages (June 2009)
Elizabeth A. Cameron, Vanessa Sperandio  Cell Host & Microbe 
Mycobacterium tuberculosis Invasion of Macrophages: Linking Bacterial Gene Expression to Environmental Cues  Kyle H. Rohde, Robert B. Abramovitch, David.
Influenza Promotes Pneumococcal Growth during Coinfection by Providing Host Sialylated Substrates as a Nutrient Source  Steven J. Siegel, Aoife M. Roche,
Volume 22, Issue 3, Pages e4 (September 2017)
Tn-Seq Analysis of Vibrio cholerae Intestinal Colonization Reveals a Role for T6SS- Mediated Antibacterial Activity in the Host  Yang Fu, Matthew K. Waldor,
Volume 18, Issue 6, Pages (December 2015)
Host Translational Inhibition by Pseudomonas aeruginosa Exotoxin A Triggers an Immune Response in Caenorhabditis elegans  Deborah L. McEwan, Natalia V.
A Major Role for Capsule-Independent Phagocytosis-Inhibitory Mechanisms in Mammalian Infection by Cryptococcus neoformans  Cheryl D. Chun, Jessica C.S.
Volume 12, Issue 9, Pages (April 2002)
Volume 13, Issue 4, Pages (April 2013)
Volume 25, Issue 4, Pages e5 (April 2018)
Gut Microbes Take Their Vitamins
Love Thy Neighbor: Sharing and Cooperativity in the Gut Microbiota
Volume 10, Issue 2, Pages (August 2011)
Volume 14, Issue 3, Pages (September 2013)
Herpes Simplex Virus Encephalitis: Toll-Free Access to the Brain
Bacteria Come into Focus: New Tools for Visualizing the Microbiota
Volume 26, Issue 13, Pages e6 (March 2019)
For HIV, It's Never Too Late to Grow Up
Wilbert Bitter, Coen Kuijl  Cell Host & Microbe 
Chemical Technologies for Probing Glycans
Paul B. Mason, Kevin Struhl  Molecular Cell 
Volume 22, Issue 2, Pages (August 2017)
Volume 141, Issue 7, Pages (June 2010)
Global Analysis of Palmitoylated Proteins in Toxoplasma gondii
Volume 17, Issue 3, Pages (March 2015)
Volume 26, Issue 11, Pages e4 (March 2019)
Volume 2, Issue 4, Pages (October 2007)
Volume 17, Issue 5, Pages (October 2016)
RNA Polymerase II Collision Interrupts Convergent Transcription
Volume 16, Issue 6, Pages (December 2014)
Volume 24, Issue 1, Pages e6 (July 2018)
Cooperative Microbial Tolerance Behaviors in Host-Microbiota Mutualism
Human Microbiota-Associated Mice: A Model with Challenges
Presentation transcript:

Volume 10, Issue 5, Pages 507-514 (November 2011) Bacteroides in the Infant Gut Consume Milk Oligosaccharides via Mucus-Utilization Pathways  Angela Marcobal, Mariana Barboza, Erica D. Sonnenburg, Nicholas Pudlo, Eric C. Martens, Prerak Desai, Carlito B. Lebrilla, Bart C. Weimer, David A. Mills, J. Bruce German, Justin L. Sonnenburg  Cell Host & Microbe  Volume 10, Issue 5, Pages 507-514 (November 2011) DOI: 10.1016/j.chom.2011.10.007 Copyright © 2011 Elsevier Inc. Terms and Conditions

Figure 1 B. thetaiotaomicron Upregulates Numerous Glycoside Hydrolases during Consumption of HMO (A) Schematic of HMO linkages (branched, top box; linear, bottom box) and putative HMO active glycoside hydrolase families (GH) (Wu et al., 2010). Linkages are to the 1-carbon of the underlying sugar unless otherwise noted. (B) In vitro growth of Bacteroides species in MM-HMO. (C) Bt gene expression at two time points (HMO1, HMO2) in MM-HMO relative to MM-glucose for 24 putative HMO active GHs (predicted to hydrolyze linkages found in milk glycans in A). See Table S1 for full list of genes upregulated in all tested carbon sources. (D) Bt HMO consumption at two time points (HMO1, HMO2), determined by MALDI-FTICR-MS. Peak IDs correspond to a characteristic oligosaccharide, with the following discrete mass to charge ratios (m/z): A, 732.25; B, 878.31; C, 1024.36; D, 1097.38; E, 1243.44; F, 1389.50; G, 1462.51; H, 1535.55; I, 1608.57; J, 1754.63; K, 1827.64; L, 1900.69; M, 1973.70; N, 2119.76; O, 2265.82; P, 2484.89. Number of monosaccharides for each mass is indicated. See Figure S1 for detailed structural information for each oligosaccharide. Error bars represent standard deviation for three biological replicates. Cell Host & Microbe 2011 10, 507-514DOI: (10.1016/j.chom.2011.10.007) Copyright © 2011 Elsevier Inc. Terms and Conditions

Figure 2 B. thetaiotaomicron Upregulates Mucus-Utilization Loci during HMO Consumption (A) Gene expression profile of Bt's induced PULs or partial PULs (∗) in MM-HMO, MM-porcine mucin glycans (PMG), or host intestinal glycans from adult or suckling mice relative to MM-glucose. Parentheses denote sample number per condition. See also Figure S2 and Table S2. (B) Schematic of mucin glycans based on previous reports (Hurd et al., 2005; Karlsson et al., 1997; Robbe et al., 2004; Robbe et al., 2003b; Thomsson et al., 2002). Structural information includes the core, extended core, and terminal (fucosylation, sialylation) motifs. Cell Host & Microbe 2011 10, 507-514DOI: (10.1016/j.chom.2011.10.007) Copyright © 2011 Elsevier Inc. Terms and Conditions

Figure 3 B. fragilis Response to HMOs Includes Sialic Acid Catabolism (A) Bf susC/susD homologs upregulated (fold change) in vitro in MM-galactose, MM-lactose, and MM-HMO relative to MM-glucose. See also Figure S3. (B) Genomic organization of Bf genes with >5-fold induction in MM_HMO relative to MM-glucose. Yellow boxes frame genes related to sialic acid consumption. White genes are upregulated <5 fold. Table S3 lists all significant HMO upregulated genes. (C) HMO-bound versus liberated Neu5Ac content in MM-HMO and in MM-HMO after Bf and Bt growth. Error bars represent standard error for three biological replicates. (D) Fold-induction of sialic acid-related genes from Bf grown in MM-O-PMG and MM-HMO relative to growth in MM-glucose, as measured by qRT-PCR. Error bars represent standard error for three biological replicates. Cell Host & Microbe 2011 10, 507-514DOI: (10.1016/j.chom.2011.10.007) Copyright © 2011 Elsevier Inc. Terms and Conditions

Figure 4 Selective Use of the HMO Lacto-N-Neotetraose by B. infantis Provides In Vivo Advantage (A) In vitro growth of Bt and B. infantis in the presence of MM-O-PMG, MM-HMO, or MM-LNnT. (B) Venn diagram representing the structural relationship of mucin and milk glycans. HMOs include a subset of structures found in mucus that can be consumed by mucus-adapted mutualists (e.g., Bacteroides). B. infantis is adapted to use simple structures within HMOs (e.g., LNnT) and is unable to use the structures found in mucin glycans. (C) Bt and B. infantis biassociation of adult germ-free mice fed a polysaccharide-deficient diet without (black circles) or with LNnT (red squares). Values represent average of fecal communities within each group (n = 4 mice/group). Cell Host & Microbe 2011 10, 507-514DOI: (10.1016/j.chom.2011.10.007) Copyright © 2011 Elsevier Inc. Terms and Conditions