Chapter 1 The Semantic Web Vision

Slides:



Advertisements
Similar presentations
Ontology-Based Computing Kenneth Baclawski Northeastern University and Jarg.
Advertisements

Dr. Leo Obrst MITRE Information Semantics Information Discovery & Understanding Command & Control Center February 6, 2014February 6, 2014February 6, 2014.
Chapter 1 The Semantic Web Vision
CH-4 Ontologies, Querying and Data Integration. Introduction to RDF(S) RDF stands for Resource Description Framework. RDF is a standard for describing.
By Ahmet Can Babaoğlu Abdurrahman Beşinci.  Suppose you want to buy a Star wars DVD having such properties;  wide-screen ( not full-screen )  the extra.
Organizing research publications in Web 3 enviroment Anastasiou Lucas Vasilis Tzouvaras
Of 27 lecture 7: owl - introduction. of 27 ece 627, winter ‘132 OWL a glimpse OWL – Web Ontology Language describes classes, properties and relations.
Chapter 1A Semantic Web Primer, 2nd Edition 1-1 ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ, ΑΠΘ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ Κατεύθυνση Πληροφοριακών Συστημάτων - 1ο Εξάμηνο.
The Web of data with meaning... By Michael Griffiths.
1 CSIT600f: Introduction to Semantic Web Conclusion and Outlook Dickson K.W. Chiu PhD, SMIEEE Text: Antoniou & van Harmelen: A Semantic Web PrimerA Semantic.
Introduction to Semantic Web Many of the slides of this chapter are from m
MARC, BIBFRAME, & Their Relationship to RDA
Chapter 1A Semantic Web Primer 1 The Semantic Web Vision Grigoris Antoniou.
State of the Art in Semantic Web standards and technologies Andreas Duscher.
The RDF meta model: a closer look Basic ideas of the RDF Resource instance descriptions in the RDF format Application-specific RDF schemas Limitations.
From SHIQ and RDF to OWL: The Making of a Web Ontology Language
Department of Computer Science, University of Maryland, College Park 1 Sharath Srinivas - CMSC 818Z, Spring 2007 Semantic Web and Knowledge Representation.
Computer communication B Introduction to the Semantic Web.
1 DCS861A-2007 Emerging IT II Rinaldo Di Giorgio Andres Nieto Chris Nwosisi Richard Washington March 17, 2007.
OIL: An Ontology Infrastructure for the Semantic Web D. Fensel, F. van Harmelen, I. Horrocks, D. L. McGuinness, P. F. Patel-Schneider Presenter: Cristina.
Semantic Web Technologies Lecture # 2 Faculty of Computer Science, IBA.
Quratulain Rajput Faculty of Computer Science, IBA Spring2013
Some Thoughts to Consider 6 What is the difference between Artificial Intelligence and Computer Science? What is the difference between Artificial Intelligence.
RDF (Resource Description Framework) Why?. XML XML is a metalanguage that allows users to define markup XML separates content and structure from formatting.
Aurora: A Conceptual Model for Web-content Adaptation to Support the Universal Accessibility of Web-based Services Anita W. Huang, Neel Sundaresan Presented.
Semantic Web Technologies ufiekg-20-2 | data, schemas & applications | lecture 21 original presentation by: Dr Rob Stephens
Practical RDF Chapter 1. RDF: An Introduction
Clément Troprès - Damien Coppéré1 Semantic Web Based on: -The semantic web -Ontologies Come of Age.
The Semantic Web Service Shuying Wang Outline Semantic Web vision Core technologies XML, RDF, Ontology, Agent… Web services DAML-S.
RDF and OWL Developing Semantic Web Services by H. Peter Alesso and Craig F. Smith CMPT 455/826 - Week 6, Day Sept-Dec 2009 – w6d21.
Metadata. Generally speaking, metadata are data and information that describe and model data and information For example, a database schema is the metadata.
Semantic Web - an introduction By Daniel Wu (danielwujr)
1 Metadata –Information about information – Different objects, different forms – e.g. Library catalogue record Property:Value: Author Ian Beardwell Publisher.
Knowledge Representation of Statistic Domain For CBR Application Supervisor : Dr. Aslina Saad Dr. Mashitoh Hashim PM Dr. Nor Hasbiah Ubaidullah.
©Ferenc Vajda 1 Semantic Grid Ferenc Vajda Computer and Automation Research Institute Hungarian Academy of Sciences.
Chapter 1 The Semantic Web Vision Grigoris Antoniou Frank van Harmelen Chapter 1A Semantic Web Primer1 Augmented by Boontawee Suntisrivaraporn,
updated ’08CmpE 583 Fall 2008Introduction- 1 CmpE 583- Web Semantics: Theory and Practice Atilla ELÇİ Computer Engineering Department Eastern.
The Semantic Web: An Interview with Tim Berners-Lee VISION: What new capabilities will the Semantic Web have? STATUS: Who is committed and how do we get.
Dr. Bhavani Thuraisingham The University of Texas at Dallas Trustworthy Semantic Webs March 25, 2011 Data and Applications Security Developments and Directions.
SKOS. Ontologies Metadata –Resources marked-up with descriptions of their content. No good unless everyone speaks the same language; Terminologies –Provide.
Oreste Signore- Quality/1 Amman, December 2006 Standards for quality of cultural websites Ministerial NEtwoRk for Valorising Activities in digitisation.
OWL Representing Information Using the Web Ontology Language.
Trustworthy Semantic Webs Dr. Bhavani Thuraisingham The University of Texas at Dallas Lecture #4 Vision for Semantic Web.
Metadata Common Vocabulary a journey from a glossary to an ontology of statistical metadata, and back Sérgio Bacelar
Of 33 lecture 1: introduction. of 33 the semantic web vision today’s web (1) web content – for human consumption (no structural information) people search.
Chapter 1A Semantic Web Primer, 2nd Edition 1-1 ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ, ΑΠΘ ΠΜΣ «Πληροφορική & Τηλεπικοινωνίες» Κατεύθυνση Πληροφοριακών Συστημάτων ΠΜΣ «Διαδίκτυο.
Presented by: Yuhana 12/17/2007 Context Aware Group - Intelligent Agent Laboratory Computer Science and Information Engineering National Taiwan University.
The Semantic Web. What is the Semantic Web? The Semantic Web is an extension of the current Web in which information is given well-defined meaning, enabling.
A Portrait of the Semantic Web in Action Jeff Heflin and James Hendler IEEE Intelligent Systems December 6, 2010 Hyewon Lim.
The Semantic Web Vision. Course Work Dr Yasser Fouad Blogs.alexu.edu.eg 2.
Chapter 8A Semantic Web Primer 1 Chapter 8 Conclusion and Outlook Grigoris Antoniou Frank van Harmelen.
Semantic Web. P2 Introduction Information management facilities not keeping pace with the capacity of our information storage. –Information Overload –haphazardly.
SEMANTIC WEB Presented by- Farhana Yasmin – MD.Raihanul Islam – Nohore Jannat –
Semantic Web Technologies Readings discussion Research presentations Projects & Papers discussions.
OWL (Ontology Web Language and Applications) Maw-Sheng Horng Department of Mathematics and Information Education National Taipei University of Education.
Components.
The Semantic Web By: Maulik Parikh.
Classifications of Software Requirements
Chapter 5 – Requirements Engineering
Introduction to the Semantic Web
ece 627 intelligent web: ontology and beyond
Lecture #11: Ontology Engineering Dr. Bhavani Thuraisingham
Semantic Web - Ontologies
Introduction to the Semantic Web
Data and Applications Security Developments and Directions
ece 720 intelligent web: ontology and beyond
ece 627 intelligent web: ontology and beyond
Web Mining Department of Computer Science and Engg.
Chapter 11 user support.
Chapter 1 The Semantic Web Vision
Presentation transcript:

Chapter 1 The Semantic Web Vision Grigoris Antoniou Frank van Harmelen Chapter 1 A Semantic Web Primer

Lecture Outline Today’s Web The Semantic Web Impact Semantic Web Technologies A Layered Approach Chapter 1 A Semantic Web Primer

Today’s Web Most of today’s Web content is suitable for human consumption Even Web content that is generated automatically from databases is usually presented without the original structural information found in databases Typical Web uses today people’s seeking and making use of information, searching for and getting in touch with other people, reviewing catalogs of online stores and ordering products by filling out forms Chapter 1 A Semantic Web Primer

Keyword-Based Search Engines Current Web activities are not particularly well supported by software tools Except for keyword-based search engines (e.g. Google, AltaVista, Yahoo) The Web would not have been the huge success it was, were it not for search engines Chapter 1 A Semantic Web Primer

Problems of Keyword-Based Search Engines High recall, low precision. Low or no recall Results are highly sensitive to vocabulary Results are single Web pages Human involvement is necessary to interpret and combine results Results of Web searches are not readily accessible by other software tools Chapter 1 A Semantic Web Primer

The Key Problem of Today’s Web The meaning of Web content is not machine-accessible: lack of semantics It is simply difficult to distinguish the meaning between these two sentences: I am a professor of computer science. I am a professor of computer science, you may think. Well, . . . Chapter 1 A Semantic Web Primer

The Semantic Web Approach Represent Web content in a form that is more easily machine-processable. Use intelligent techniques to take advantage of these representations. The Semantic Web will gradually evolve out of the existing Web, it is not a competition to the current WWW Chapter 1 A Semantic Web Primer

Lecture Outline Today’s Web The Semantic Web Impact Semantic Web Technologies A Layered Approach Chapter 1 A Semantic Web Primer

The Semantic Web Impact – Knowledge Management Knowledge management concerns itself with acquiring, accessing, and maintaining knowledge within an organization Key activity of large businesses: internal knowledge as an intellectual asset It is particularly important for international, geographically dispersed organizations Most information is currently available in a weakly structured form (e.g. text, audio, video) Chapter 1 A Semantic Web Primer

Limitations of Current Knowledge Management Technologies Searching information Keyword-based search engines Extracting information human involvement necessary for browsing, retrieving, interpreting, combining Maintaining information inconsistencies in terminology, outdated information. Viewing information Impossible to define views on Web knowledge Chapter 1 A Semantic Web Primer

Semantic Web Enabled Knowledge Management Knowledge will be organized in conceptual spaces according to its meaning. Automated tools for maintenance and knowledge discovery Semantic query answering Query answering over several documents Defining who may view certain parts of information (even parts of documents) will be possible. Chapter 1 A Semantic Web Primer

The Semantic Web Impact – B2C Electronic Commmerce A typical scenario: user visits one or several online shops, browses their offers, selects and orders products. Ideally humans would visit all, or all major online stores; but too time consuming Shopbots are a useful tool Chapter 1 A Semantic Web Primer

Limitations of Shopbots They rely on wrappers: extensive programming required Wrappers need to be reprogrammed when an online store changes its outfit Wrappers extract information based on textual analysis Error-prone Limited information extracted Chapter 1 A Semantic Web Primer

Semantic Web Enabled B2C Electronic Commerce Software agents that can interpret the product information and the terms of service. Pricing and product information, delivery and privacy policies will be interpreted and compared to the user requirements. Information about the reputation of shops Sophisticated shopping agents will be able to conduct automated negotiations Chapter 1 A Semantic Web Primer

The Semantic Web Impact – B2B Electronic Commerce Greatest economic promise Currently relies mostly on EDI Isolated technology, understood only by experts Difficult to program and maintain, error-prone Each B2B communication requires separate programming Web appears to be perfect infrastructure But B2B not well supported by Web standards Chapter 1 A Semantic Web Primer

Semantic Web Enabled B2B Electronic Commerce Businesses enter partnerships without much overhead Differences in terminology will be resolved using standard abstract domain models Data will be interchanged using translation services. Auctioning, negotiations, and drafting contracts will be carried out automatically (or semi-automatically) by software agents Chapter 1 A Semantic Web Primer

Lecture Outline Today’s Web The Semantic Web Impact Semantic Web Technologies A Layered Approach Chapter 1 A Semantic Web Primer

Semantic Web Technologies Explicit Metadata Ontologies Logic and Inference Agents Chapter 1 A Semantic Web Primer

On HTML Web content is currently formatted for human readers rather than programs HTML is the predominant language in which Web pages are written (directly or using tools) Vocabulary describes presentation Chapter 1 A Semantic Web Primer

An HTML Example <h1>Agilitas Physiotherapy Centre</h1> Welcome to the home page of the Agilitas Physiotherapy Centre. Do you feel pain? Have you had an injury? Let our staff Lisa Davenport, Kelly Townsend (our lovely secretary) and Steve Matthews take care of your body and soul. <h2>Consultation hours</h2> Mon 11am - 7pm<br> Tue 11am - 7pm<br> Wed 3pm - 7pm<br> Thu 11am - 7pm<br> Fri 11am - 3pm<p> But note that we do not offer consultation during the weeks of the <a href=". . .">State Of Origin</a> games. Chapter 1 A Semantic Web Primer

Problems with HTML Humans have no problem with this Machines (software agents) do: How distinguish therapists from the secretary, How determine exact consultation hours They would have to follow the link to the State Of Origin games to find when they take place. Chapter 1 A Semantic Web Primer

A Better Representation <company> <treatmentOffered>Physiotherapy</treatmentOffered> <companyName>Agilitas Physiotherapy Centre</companyName> <staff> <therapist>Lisa Davenport</therapist> <therapist>Steve Matthews</therapist> <secretary>Kelly Townsend</secretary> </staff> </company> Chapter 1 A Semantic Web Primer

Explicit Metadata This representation is far more easily processable by machines Metadata: data about data Metadata capture part of the meaning of data Semantic Web does not rely on text-based manipulation, but rather on machine-processable metadata Chapter 1 A Semantic Web Primer

Ontologies The term ontology originates from philosophy The study of the nature of existence Different meaning from computer science An ontology is an explicit and formal specification of a conceptualization Chapter 1 A Semantic Web Primer

Typical Components of Ontologies Terms denote important concepts (classes of objects) of the domain e.g. professors, staff, students, courses, departments Relationships between these terms: typically class hierarchies a class C to be a subclass of another class C' if every object in C is also included in C' e.g. all professors are staff members Chapter 1 A Semantic Web Primer

Further Components of Ontologies Properties: e.g. X teaches Y Value restrictions e.g. only faculty members can teach courses Disjointness statements e.g. faculty and general staff are disjoint Logical relationships between objects e.g. every department must include at least 10 faculty Chapter 1 A Semantic Web Primer

Example of a Class Hierarchy Chapter 1 A Semantic Web Primer

The Role of Ontologies on the Web Ontologies provide a shared understanding of a domain: semantic interoperability overcome differences in terminology mappings between ontologies Ontologies are useful for the organization and navigation of Web sites Chapter 1 A Semantic Web Primer

The Role of Ontologies in Web Search Ontologies are useful for improving the accuracy of Web searches search engines can look for pages that refer to a precise concept in an ontology Web searches can exploit generalization/ specialization information If a query fails to find any relevant documents, the search engine may suggest to the user a more general query. If too many answers are retrieved, the search engine may suggest to the user some specializations. Chapter 1 A Semantic Web Primer

Web Ontology Languages RDF Schema RDF is a data model for objects and relations between them RDF Schema is a vocabulary description language Describes properties and classes of RDF resources Provides semantics for generalization hierarchies of properties and classes Chapter 1 A Semantic Web Primer

Web Ontology Languages (2) OWL A richer ontology language relations between classes e.g., disjointness cardinality e.g. “exactly one” richer typing of properties characteristics of properties (e.g., symmetry) Chapter 1 A Semantic Web Primer

Logic and Inference Logic is the discipline that studies the principles of reasoning Formal languages for expressing knowledge Well-understood formal semantics Declarative knowledge: we describe what holds without caring about how it can be deduced Automated reasoners can deduce (infer) conclusions from the given knowledge Chapter 1 A Semantic Web Primer

An Inference Example prof(X)  faculty(X) faculty(X)  staff(X) prof(michael) We can deduce the following conclusions: faculty(michael) staff(michael) prof(X)  staff(X) Chapter 1 A Semantic Web Primer

Logic versus Ontologies The previous example involves knowledge typically found in ontologies Logic can be used to uncover ontological knowledge that is implicitly given It can also help uncover unexpected relationships and inconsistencies Logic is more general than ontologies It can also be used by intelligent agents for making decisions and selecting courses of action Chapter 1 A Semantic Web Primer

Tradeoff between Expressive Power and Computational Complexity The more expressive a logic is, the more computationally expensive it becomes to draw conclusions Drawing certain conclusions may become impossible if non-computability barriers are encountered. Our previous examples involved rules “If conditions, then conclusion,” and only finitely many objects This subset of logic is tractable and is supported by efficient reasoning tools Chapter 1 A Semantic Web Primer

Inference and Explanations Explanations: the series of inference steps can be retraced They increase users’ confidence in Semantic Web agents: “Oh yeah?” button Activities between agents: create or validate proofs Chapter 1 A Semantic Web Primer

Typical Explanation Procedure Facts will typically be traced to some Web addresses The trust of the Web address will be verifiable by agents Rules may be a part of a shared commerce ontology or the policy of the online shop Chapter 1 A Semantic Web Primer

Software Agents Software agents work autonomously and proactively They evolved out of object oriented and compontent-based programming A personal agent on the Semantic Web will: receive some tasks and preferences from the person seek information from Web sources, communicate with other agents compare information about user requirements and preferences, make certain choices give answers to the user Chapter 1 A Semantic Web Primer

Intelligent Personal Agents Chapter 1 A Semantic Web Primer

Semantic Web Agent Technologies Metadata Identify and extract information from Web sources Ontologies Web searches, interpret retrieved information Communicate with other agents Logic Process retrieved information, draw conclusions Chapter 1 A Semantic Web Primer

Semantic Web Agent Technologies (2) Further technologies (orthogonal to the Semantic Web technologies) Agent communication languages Formal representation of beliefs, desires, and intentions of agents Creation and maintenance of user models. Chapter 1 A Semantic Web Primer

Lecture Outline Today’s Web The Semantic Web Impact Semantic Web Technologies A Layered Approach Chapter 1 A Semantic Web Primer

A Layered Approach The development of the Semantic Web proceeds in steps Each step building a layer on top of another Principles: Downward compatibility Upward partial understanding Chapter 1 A Semantic Web Primer

The Semantic Web Layer Tower Chapter 1 A Semantic Web Primer

Semantic Web Layers XML layer RDF layer Ontology layer Syntactic basis RDF basic data model for facts RDF Schema simple ontology language Ontology layer More expressive languages than RDF Schema Current Web standard: OWL Chapter 1 A Semantic Web Primer

Semantic Web Layers (2) Logic layer Proof layer Trust layer enhance ontology languages further application-specific declarative knowledge Proof layer Proof generation, exchange, validation Trust layer Digital signatures recommendations, rating agencies …. Chapter 1 A Semantic Web Primer

Book Outline Structured Web Documents in XML Describing Web Resources in RDF Web Ontology Language: OWL Logic and Inference: Rules Applications Ontology Engineering Conclusion and Outlook Chapter 1 A Semantic Web Primer