Announcements more panorama slots available now

Slides:



Advertisements
Similar presentations
Andrew Cosand ECE CVRR CSE
Advertisements

CSCE 643 Computer Vision: Lucas-Kanade Registration
Optical Flow Estimation
CISC 489/689 Spring 2009 University of Delaware
Motion.
Computer Vision Optical Flow
Automatic Image Alignment (direct) : Computational Photography Alexei Efros, CMU, Fall 2006 with a lot of slides stolen from Steve Seitz and Rick.
Motion Estimation I What affects the induced image motion? Camera motion Object motion Scene structure.
Announcements Quiz Thursday Quiz Review Tomorrow: AV Williams 4424, 4pm. Practice Quiz handout.
Optical Flow Methods 2007/8/9.
CSCE 641 Computer Graphics: Image Registration Jinxiang Chai.
Lecture 9 Optical Flow, Feature Tracking, Normal Flow
Announcements Project1 artifact reminder counts towards your grade Demos this Thursday, 12-2:30 sign up! Extra office hours this week David (T 12-1, W/F.
Feature matching and tracking Class 5 Read Section 4.1 of course notes Read Shi and Tomasi’s paper on.
Announcements Project 1 test the turn-in procedure this week (make sure your folder’s there) grading session next Thursday 2:30-5pm –10 minute slot to.
Optical flow and Tracking CISC 649/849 Spring 2009 University of Delaware.
Caltech, Oct Lihi Zelnik-Manor
Visual motion Many slides adapted from S. Seitz, R. Szeliski, M. Pollefeys.
Motion Computing in Image Analysis
Optical Flow Estimation
Lecture 19: Optical flow CS6670: Computer Vision Noah Snavely
Visual motion Many slides adapted from S. Seitz, R. Szeliski, M. Pollefeys.
Motion Estimation Today’s Readings Trucco & Verri, 8.3 – 8.4 (skip 8.3.3, read only top half of p. 199) Numerical Recipes (Newton-Raphson), 9.4 (first.
1 Stanford CS223B Computer Vision, Winter 2006 Lecture 7 Optical Flow Professor Sebastian Thrun CAs: Dan Maynes-Aminzade, Mitul Saha, Greg Corrado Slides.
Matching Compare region of image to region of image. –We talked about this for stereo. –Important for motion. Epipolar constraint unknown. But motion small.
Automatic Image Alignment via Motion Estimation
KLT tracker & triangulation Class 6 Read Shi and Tomasi’s paper on good features to track
Computational Photography: Image Registration Jinxiang Chai.
Announcements Project1 due Tuesday. Motion Estimation Today’s Readings Trucco & Verri, 8.3 – 8.4 (skip 8.3.3, read only top half of p. 199) Supplemental:
CSCE 641 Computer Graphics: Image Registration Jinxiang Chai.
Motion and optical flow Thursday, Nov 20 Many slides adapted from S. Seitz, R. Szeliski, M. Pollefeys, S. Lazebnik.
Optical flow Combination of slides from Rick Szeliski, Steve Seitz, Alyosha Efros and Bill Freeman.
Generating panorama using translational movement model.
1 Motion Estimation Readings: Ch 9: plus papers change detection optical flow analysis Lucas-Kanade method with pyramid structure Ming Ye’s improved.
Optical Flow Donald Tanguay June 12, Outline Description of optical flow General techniques Specific methods –Horn and Schunck (regularization)
Motion estimation Digital Visual Effects Yung-Yu Chuang with slides by Michael Black and P. Anandan.
Motion Segmentation By Hadas Shahar (and John Y.A.Wang, and Edward H. Adelson, and Wikipedia and YouTube) 1.
CSE 185 Introduction to Computer Vision Feature Tracking and Optical Flow.
Visual motion Many slides adapted from S. Seitz, R. Szeliski, M. Pollefeys.
Uses of Motion 3D shape reconstruction Segment objects based on motion cues Recognize events and activities Improve video quality Track objects Correct.
Computer Vision Spring ,-685 Instructor: S. Narasimhan Wean 5403 T-R 3:00pm – 4:20pm Lecture #16.
Effective Optical Flow Estimation
3D Imaging Motion.
Joint Tracking of Features and Edges STAN BIRCHFIELD AND SHRINIVAS PUNDLIK CLEMSON UNIVERSITY ABSTRACT LUCAS-KANADE AND HORN-SCHUNCK JOINT TRACKING OF.
Miguel Tavares Coimbra
O PTICAL F LOW & L AYERED M OTION Prepared by: Lidya Tonkonogi Mu’in Rizik 1.
Motion Estimation Today’s Readings Trucco & Verri, 8.3 – 8.4 (skip 8.3.3, read only top half of p. 199) Newton's method Wikpedia page
Motion Estimation I What affects the induced image motion?
1 Lucas-Kanade Motion Estimation Thanks to Steve Seitz, Simon Baker, Takeo Kanade, and anyone else who helped develop these slides.
Motion Estimation Today’s Readings Trucco & Verri, 8.3 – 8.4 (skip 8.3.3, read only top half of p. 199) Newton's method Wikpedia page
Motion estimation Digital Visual Effects, Spring 2006 Yung-Yu Chuang 2005/4/12 with slides by Michael Black and P. Anandan.
Optical flow and keypoint tracking Many slides adapted from S. Seitz, R. Szeliski, M. Pollefeys.
1 Motion Estimation Readings: Ch 9: plus papers change detection optical flow analysis Lucas-Kanade method with pyramid structure Ming Ye’s improved.
MASKS © 2004 Invitation to 3D vision Lecture 3 Image Primitives andCorrespondence.
Image Motion. The Information from Image Motion 3D motion between observer and scene + structure of the scene –Wallach O’Connell (1953): Kinetic depth.
Motion estimation Parametric motion (image alignment) Tracking Optical flow.
Motion estimation Digital Visual Effects, Spring 2005 Yung-Yu Chuang 2005/3/23 with slides by Michael Black and P. Anandan.
Motion and optical flow
Feature Tracking and Optical Flow
CPSC 641: Image Registration
Estimating Parametric and Layered Motion
Motion and Optical Flow
Digital Visual Effects Yung-Yu Chuang
Motion Estimation Today’s Readings
Announcements more panorama slots available now
Motion Estimation Thanks to Steve Seitz, Simon Baker, Takeo Kanade, and anyone else who helped develop these slides.
Announcements Questions on the project? New turn-in info online
23 April 2019.
Optical flow Computer Vision Spring 2019, Lecture 21
Optical flow and keypoint tracking
Presentation transcript:

Announcements more panorama slots available now you can sign up for a 2nd time if you’d like

Motion Estimation Today’s Readings http://www.sandlotscience.com/Ambiguous/Barberpole_Illusion.htm http://www.sandlotscience.com/Distortions/Breathing_Square.htm Today’s Readings Szeliski Chapters 7.1, 7.2, 7.4

Why estimate motion? Lots of uses Track object behavior Correct for camera jitter (stabilization) Align images (mosaics) 3D shape reconstruction Special effects

Motion estimation Input: sequence of images Output: point correspondence Feature correspondence: “Feature Tracking” we’ve seen this already (e.g., SIFT) can modify this to be more accurate/efficient if the images are in sequence (e.g., video) Pixel (dense) correspondence: “Optical Flow” today’s lecture

Optical flow

Problem definition: optical flow How to estimate pixel motion from image H to image I? Solve pixel correspondence problem given a pixel in H, look for nearby pixels of the same color in I Key assumptions color constancy: a point in H looks the same in I For grayscale images, this is brightness constancy small motion: points do not move very far This is called the optical flow problem

Optical flow constraints (grayscale images) Let’s look at these constraints more closely brightness constancy: Q: what’s the equation? A: H(x,y) = I(x+u, y+v) small motion: (u and v are less than 1 pixel) suppose we take the Taylor series expansion of I:

Optical flow equation Combining these two equations

Optical flow equation Combining these two equations In the limit as u and v go to zero, this becomes exact

Optical flow equation Q: how many unknowns and equations per pixel? Intuitively, what does this constraint mean? The component of the flow in the gradient direction is determined The component of the flow parallel to an edge is unknown A: u and v are unknown, 1 equation This explains the Barber Pole illusion http://www.sandlotscience.com/Ambiguous/Barberpole_Illusion.htm

Aperture problem

Aperture problem

Solving the aperture problem Basic idea: assume motion field is smooth Horn & Schunk: add smoothness term Lucas & Kanade: assume locally constant motion pretend the pixel’s neighbors have the same (u,v) Many other methods exist. Here’s an overview: S. Baker, M. Black, J. P. Lewis, S. Roth, D. Scharstein, and R. Szeliski. A database and evaluation methodology for optical flow. In Proc. ICCV, 2007 http://vision.middlebury.edu/flow/

Lucas-Kanade flow How to get more equations for a pixel? Basic idea: impose additional constraints most common is to assume that the flow field is smooth locally one method: pretend the pixel’s neighbors have the same (u,v) If we use a 5x5 window, that gives us 25 equations per pixel!

RGB version How to get more equations for a pixel? Basic idea: impose additional constraints most common is to assume that the flow field is smooth locally one method: pretend the pixel’s neighbors have the same (u,v) If we use a 5x5 window, that gives us 25*3 equations per pixel!

Lucas-Kanade flow Prob: we have more equations than unknowns Solution: solve least squares problem minimum least squares solution given by solution (in d) of: The summations are over all pixels in the K x K window This technique was first proposed by Lucas & Kanade (1981)

Conditions for solvability Optimal (u, v) satisfies Lucas-Kanade equation When is This Solvable? ATA should be invertible ATA should not be too small due to noise eigenvalues l1 and l2 of ATA should not be too small ATA should be well-conditioned l1/ l2 should not be too large (l1 = larger eigenvalue) Does this look familiar? ATA is the Harris matrix

Observation This is a two image problem BUT Can measure sensitivity by just looking at one of the images! This tells us which pixels are easy to track, which are hard very useful for feature tracking...

Errors in Lucas-Kanade What are the potential causes of errors in this procedure? Suppose ATA is easily invertible Suppose there is not much noise in the image When our assumptions are violated Brightness constancy is not satisfied The motion is not small A point does not move like its neighbors window size is too large what is the ideal window size?

Improving accuracy Recall our small motion assumption This is not exact To do better, we need to add higher order terms back in: This is a polynomial root finding problem Can solve using Newton’s method Also known as Newton-Raphson method For more on Newton-Raphson, see (first four pages) http://www.ulib.org/webRoot/Books/Numerical_Recipes/bookcpdf/c9-4.pdf Lucas-Kanade method does one iteration of Newton’s method Better results are obtained via more iterations 1D case on board

Iterative Refinement Iterative Lucas-Kanade Algorithm Estimate velocity at each pixel by solving Lucas-Kanade equations Warp H towards I using the estimated flow field - use image warping techniques Repeat until convergence

Revisiting the small motion assumption Is this motion small enough? Probably not—it’s much larger than one pixel (2nd order terms dominate) How might we solve this problem?

Reduce the resolution!

Coarse-to-fine optical flow estimation Gaussian pyramid of image H Gaussian pyramid of image I image I image H u=10 pixels u=5 pixels u=2.5 pixels u=1.25 pixels image H image I

Coarse-to-fine optical flow estimation Gaussian pyramid of image H Gaussian pyramid of image I image I image H run iterative L-K warp & upsample run iterative L-K . image J image I

Optical flow result Dewey morph

Robust methods L-K minimizes a sum-of-squares error metric least squares techniques overly sensitive to outliers quadratic truncated quadratic lorentzian Error metrics

Robust optical flow Robust Horn & Schunk Robust Lucas-Kanade Reference first image quadratic flow lorentzian flow detected outliers Reference Black, M. J. and Anandan, P., A framework for the robust estimation of optical flow, Fourth International Conf. on Computer Vision (ICCV), 1993, pp. 231-236 http://www.cs.washington.edu/education/courses/576/03sp/readings/black93.pdf

Benchmarking optical flow algorithms Middlebury flow page http://vision.middlebury.edu/flow/

Discussion: features vs. flow? Features are better for: Flow is better for:

Advanced topics Particles: combining features and flow Peter Sand et al. http://rvsn.csail.mit.edu/pv/ State-of-the-art feature tracking/SLAM Georg Klein et al. http://www.robots.ox.ac.uk/~gk/