Opposing cartilages in the patellofemoral joint adapt differently to long-term cruciate deficiency: chondrocyte deformation and reorientation with compression 

Slides:



Advertisements
Similar presentations
Cell and matrix morphology in articular cartilage from adult human knee and ankle joints suggests depth-associated adaptations to biomechanical and anatomical.
Advertisements

Muscle weakness causes joint degeneration in rabbits
B. Bai, Y. Li  Osteoarthritis and Cartilage 
Microstructural remodeling of articular cartilage following defect repair by osteochondral autograft transfer  C.B. Raub, S.C. Hsu, E.F. Chan, R. Shirazi,
Biomechanical, biochemical and structural correlations in immature and mature rabbit articular cartilage  P. Julkunen, T. Harjula, J. Iivarinen, J. Marjanen,
C.P. Neu, T. Novak, K.F. Gilliland, P. Marshall, S. Calve 
Biochemical markers of type II collagen breakdown and synthesis are positioned at specific sites in human osteoarthritic knee cartilage  A.-C. Bay-Jensen,
Yevgeniya Kobrina, Lassi Rieppo, Simo Saarakkala, Jukka S
Microstructural remodeling of articular cartilage following defect repair by osteochondral autograft transfer  C.B. Raub, S.C. Hsu, E.F. Chan, R. Shirazi,
Maturation-dependent change and regional variations in acoustic stiffness of rabbit articular cartilage: an examination of the superficial collagen-rich.
Effects of short-term gentle treadmill walking on subchondral bone in a rat model of instability-induced osteoarthritis  H. Iijima, T. Aoyama, A. Ito,
Long-term periarticular bone adaptation in a feline knee injury model for post-traumatic experimental osteoarthritis  S.K. Boyd, Ph.D., R. Müller, Ph.D.,
A. Williams, Y. Qian, D. Bear, C.R. Chu  Osteoarthritis and Cartilage 
Hisham A. Alhadlaq, M.S., Yang Xia, Ph.D.  Osteoarthritis and Cartilage 
The groove model of osteoarthritis applied to the ovine fetlock joint
Treatment of full thickness focal cartilage lesions with a metallic resurfacing implant in a sheep animal model, 1 year evaluation  N. Martinez-Carranza,
Deformation patterns of cracked articular cartilage under compression
Cell deformation behavior in mechanically loaded rabbit articular cartilage 4 weeks after anterior cruciate ligament transection  S.M. Turunen, S.-K.
K. Murata, N. Kanemura, T. Kokubun, T. Fujino, Y. Morishita, K
Acute joint pathology and synovial inflammation is associated with increased intra- articular fracture severity in the mouse knee  J.S. Lewis, W.C. Hembree,
Effects of short-term gentle treadmill walking on subchondral bone in a rat model of instability-induced osteoarthritis  H. Iijima, T. Aoyama, A. Ito,
Depletion of primary cilia in articular chondrocytes results in reduced Gli3 repressor to activator ratio, increased Hedgehog signaling, and symptoms.
Determining collagen distribution in articular cartilage using contrast-enhanced micro- computed tomography  H.J. Nieminen, T. Ylitalo, S. Karhula, J.-P.
M.L. Hall, D.A. Krawczak, N.K. Simha, J.L. Lewis 
A.R. Gannon, T. Nagel, D.J. Kelly  Osteoarthritis and Cartilage 
Measurement accuracy of focal cartilage defects from MRI and correlation of MRI graded lesions with histology: a preliminary study  Chris A McGibbon,
Changes in spatial collagen content and collagen network architecture in porcine articular cartilage during growth and maturation  J. Rieppo, M.D., M.M.
H. Shao, C. Pauli, S. Li, Y. Ma, A. S. Tadros, A. Kavanaugh, E. Y
Heterogeneity in patellofemoral cartilage adaptation to anterior cruciate ligament transection; chondrocyte shape and deformation with compression  A.L.
The use of hyperosmotic saline for chondroprotection: implications for orthopaedic surgery and cartilage repair  N.M. Eltawil, S.E.M. Howie, A.H.R.W.
Regional variations of collagen orientation in normal and diseased articular cartilage and subchondral bone determined using small angle X-ray scattering.
The OARSI histopathology initiative – recommendations for histological assessments of osteoarthritis in the guinea pig  V.B. Kraus, J.L. Huebner, J. DeGroot,
The innervation of synovium of human osteoarthritic joints in comparison with normal rat and sheep synovium  A. Eitner, J. Pester, S. Nietzsche, G.O.
Effect of puerarin on bone formation
Destabilization of the medial meniscus leads to subchondral bone defects and site- specific cartilage degeneration in an experimental rat model  H. Iijima,
Protective effects of a cathepsin K inhibitor, SB , in the canine partial medial meniscectomy model of osteoarthritis  J.R. Connor, C. LePage, B.A.
The OARSI histopathology initiative – recommendations for histological assessments of osteoarthritis in the rat  N. Gerwin, A.M. Bendele, S. Glasson,
B.D. Bomsta, M.S., L.C. Bridgewater, Ph.D., R.E. Seegmiller, Ph.D. 
P. Julkunen, J. Iivarinen, P. A. Brama, J. Arokoski, J. S. Jurvelin, H
S.M. Hosseini, M.B. Veldink, K. Ito, C.C. van Donkelaar 
A histological comparison of the repair tissue formed when using either Chondrogide® or periosteum during autologous chondrocyte implantation  H.S. McCarthy,
UTE bi-component analysis of T2* relaxation in articular cartilage
Repair of osteochondral defects with recombinant human type II collagen gel and autologous chondrocytes in rabbit  H.J. Pulkkinen, V. Tiitu, P. Valonen,
A.C. Dang, M.D., A.P. Warren, M.D., H.T. Kim, M.D., Ph.D. 
Structural adaptations in compressed articular cartilage measured by diffusion tensor imaging  S.K. de Visser, B.Eng. (Med.), R.W. Crawford, D.Phil.,
K.H. Collins, R.A. Reimer, R.A. Seerattan, T.R. Leonard, W. Herzog 
D.R. Rich, A.L. Clark  Osteoarthritis and Cartilage 
Do the matrix degrading enzymes cathepsins B and D increase following a high intensity exercise regime?  E.A. Bowe, Ph.D., R.C. Murray, Ph.D., L.B. Jeffcott,
Evidence for articular cartilage regeneration in MRL/MpJ mice
Cell and matrix morphology in articular cartilage from adult human knee and ankle joints suggests depth-associated adaptations to biomechanical and anatomical.
New insights into the role of the superficial tangential zone in influencing the microstructural response of articular cartilage to compression  S.L.
J. Desrochers, M.W. Amrein, J.R. Matyas  Osteoarthritis and Cartilage 
Osteoarthritis development in novel experimental mouse models induced by knee joint instability  S. Kamekura, M.D., K. Hoshi, M.D., Ph.D., T. Shimoaka,
V. Morel, Ph.D., A. Merçay, M.Sc., T.M. Quinn, Ph.D. 
Characterizing osteochondrosis in the dog: potential roles for matrix metalloproteinases and mechanical load in pathogenesis and disease progression 
A novel in vivo murine model of cartilage regeneration
Meniscectomy alters the dynamic deformational behavior and cumulative strain of tibial articular cartilage in knee joints subjected to cyclic loads  Y.
In vitro glycation of articular cartilage alters the biomechanical response of chondrocytes in a depth-dependent manner  J.M. Fick, M.R.J. Huttu, M.J.
J.L. Huebner, J.M. Williams, M. Deberg, Y. Henrotin, V.B. Kraus 
K.P. Arkill, Ph.D., C.P. Winlove, D.Phil.  Osteoarthritis and Cartilage 
Histopathological correlation of cartilage swelling detected by magnetic resonance imaging in early experimental osteoarthritis  E. Calvo, M.D., I. Palacios,
W.C. Bae, Ph.D., B.L. Schumacher, B.S., R.L. Sah, M.D., Sc.D. 
Microstructural analysis of collagen and elastin fibres in the kangaroo articular cartilage reveals a structural divergence depending on its local mechanical.
The canine ‘groove’ model of osteoarthritis is more than simply the expression of surgically applied damage  Simon C. Mastbergen, M.Sc., Anne C. Marijnissen,
C. Pascual Garrido, A. A. Hakimiyan, L. Rappoport, T. R. Oegema, M. A
Comparison of cartilage histopathology assessment systems on human knee joints at all stages of osteoarthritis development  C. Pauli, R. Whiteside, F.L.
H. Stenhamre, M. Sc. , K. Slynarski, M. D. , Ph. D. , C. Petrén, T
B.D. Bomsta, M.S., L.C. Bridgewater, Ph.D., R.E. Seegmiller, Ph.D. 
R. Meder, Ph. D. , S. K. de Visser, B. Eng. (Med. ), J. C. Bowden, B
A. Levillain, C. Boulocher, S. Kaderli, E. Viguier, D. Hannouche, T
Presentation transcript:

Opposing cartilages in the patellofemoral joint adapt differently to long-term cruciate deficiency: chondrocyte deformation and reorientation with compression  A.L. Clark, Ph.D., T.R. Leonard, B.Sc., L.D. Barclay, B.A., J.R. Matyas, Ph.D., W. Herzog, Ph.D.  Osteoarthritis and Cartilage  Volume 13, Issue 12, Pages 1100-1114 (December 2005) DOI: 10.1016/j.joca.2005.07.010 Copyright © 2005 OsteoArthritis Research Society International Terms and Conditions

Fig. 1 Typical stress-relaxation curve for a 15MPa experimental patellar sample. Maximum force=11.8N. After 20min relaxation all samples had reached >78% of final relaxation. Osteoarthritis and Cartilage 2005 13, 1100-1114DOI: (10.1016/j.joca.2005.07.010) Copyright © 2005 OsteoArthritis Research Society International Terms and Conditions

Fig. 2 Superficial and deep layer chondrocytes from a not-indented experimental femoral groove (a) the original picture, (b) after manual tracing with a computer mouse and (c) after reduction of the picture to a black (matrix) and white (chondrocyte) image. Pictures taken at 63× magnification, resolution 6.4 pixels/μm. The scale bar in each image represents 5μm. Osteoarthritis and Cartilage 2005 13, 1100-1114DOI: (10.1016/j.joca.2005.07.010) Copyright © 2005 OsteoArthritis Research Society International Terms and Conditions

Fig. 3 Comparison of normal and experimental patellar cartilage in the not-indented and indented states. Experimental not-indented and indented sections are from the same animal. The x and y directions and a 100μm scale bar are indicated to the left and right of the micrographs, respectively. All sections 0.5μm thick, stained with toluidine blue and photographed at 20× magnification. Osteoarthritis and Cartilage 2005 13, 1100-1114DOI: (10.1016/j.joca.2005.07.010) Copyright © 2005 OsteoArthritis Research Society International Terms and Conditions

Fig. 4 Chondrocyte orientation as a function of normalised cartilage depth (0=surface, 1=cartilage–bone interface) for typical patellar samples in the (a) normal not-indented, (b) normal indent, (c) experimental not-indented and (d) experimental indent states. Each point on the graph represents a single chondrocyte. Shaded areas represent regions of interest in the data discussed in the text. Osteoarthritis and Cartilage 2005 13, 1100-1114DOI: (10.1016/j.joca.2005.07.010) Copyright © 2005 OsteoArthritis Research Society International Terms and Conditions

Fig. 5 Chondrocyte orientation as a function of chondrocyte shape for typical patellar samples in the (a) normal not-indented, (b) normal indent, (c) experimental not-indented and (d) experimental indent states. Each point on the graph represents a single chondrocyte. Representative ellipses placed at their corresponding values of shape are shown pictorially on the x axis. Shaded areas represent regions of interest in the data discussed in the text. Osteoarthritis and Cartilage 2005 13, 1100-1114DOI: (10.1016/j.joca.2005.07.010) Copyright © 2005 OsteoArthritis Research Society International Terms and Conditions

Fig. 6 Comparison of not-indented normal, contralateral and experimental patellar and femoral groove cartilage. The superficial (S), middle (M) and deep (D) layers are indicated to the left of each image. All contralateral and experimental sections are from the same animal except the disparate experimental femoral groove. Note all animals demonstrate histological differences in the experimental patella, however, only two of six showed these changes in the femoral groove. All sections 0.5μm thick, stained with toluidine blue and photographed at 50× magnification. Osteoarthritis and Cartilage 2005 13, 1100-1114DOI: (10.1016/j.joca.2005.07.010) Copyright © 2005 OsteoArthritis Research Society International Terms and Conditions

Fig. 7 Total modified Mankin et al.36 histological–histochemical scores (Table III) as a function of surgery (contralateral (contra), experimental (exp)) and site (patella, femoral groove (femur)) for each subject. Osteoarthritis and Cartilage 2005 13, 1100-1114DOI: (10.1016/j.joca.2005.07.010) Copyright © 2005 OsteoArthritis Research Society International Terms and Conditions

Fig. 8 Chondrocyte shape as a function of normalised cartilage depth (0=surface, 1=cartilage–bone interface) for (a) patellar and (b) femoral groove cartilage. Each graph shows values for normal, contralateral (contra) and experimental (exp) cartilage in the not-indented and indented states. The data from the disparate experimental (dis exp) femoral grooves (n=2) have been isolated from the normal looking experimental femoral samples (n=4) in (b) for clarity. Each point represents an average value of chondrocyte shape across a 5% or 10% bin of cartilage depth. Error bars represent one SD from the mean. Representative ellipses placed at their corresponding values of chondrocyte shape are shown pictorially on the right. Osteoarthritis and Cartilage 2005 13, 1100-1114DOI: (10.1016/j.joca.2005.07.010) Copyright © 2005 OsteoArthritis Research Society International Terms and Conditions

Fig. 9 Normalised change in chondrocyte aspect ratio as a function of normalised cartilage depth (0=surface, 1=cartilage–bone interface). Values are shown for femoral groove and patellar samples in the normal, contralateral (contra) and experimental (exp) states. Each point represents an average value of aspect ratio change across a 10% bin of cartilage depth. Normalised change in chondrocyte aspect ratio is positive (cells becoming flattened with compression) for all samples. Osteoarthritis and Cartilage 2005 13, 1100-1114DOI: (10.1016/j.joca.2005.07.010) Copyright © 2005 OsteoArthritis Research Society International Terms and Conditions

Fig. 10 Chondrocyte volumetric fraction as a function of cartilage layer for (a) patellar and (b) femoral groove cartilage. Each graph shows values for normal, contralateral (contra) and experimental (exp) cartilage in the not-indented and indented states. The data from the disparate experimental (dis exp) femoral grooves (n=2) have been isolated from the normal looking experimental femoral samples (n=4) in (b) for clarity. Error bars represent one SD from the mean. Osteoarthritis and Cartilage 2005 13, 1100-1114DOI: (10.1016/j.joca.2005.07.010) Copyright © 2005 OsteoArthritis Research Society International Terms and Conditions

Fig. 11 A schematic representation comparing normal and experimental cartilage in the not-indented and indented states. Lines represent collagen fibres and ellipses represent chondrocytes. Changes to cartilage histology in the superficial and middle layers with ACL-T alter the structural reorganisation that occurs throughout the cartilage depth with indentation. Osteoarthritis and Cartilage 2005 13, 1100-1114DOI: (10.1016/j.joca.2005.07.010) Copyright © 2005 OsteoArthritis Research Society International Terms and Conditions