Volume 8, Issue 9, Pages (September 2000)

Slides:



Advertisements
Similar presentations
Volume 6, Issue 1, Pages (January 1998)
Advertisements

Munirathinam Sundaramoorthy, James Terner, Thomas L Poulos  Structure 
3-Dimensional structure of membrane-bound coagulation factor VIII: modeling of the factor VIII heterodimer within a 3-dimensional density map derived by.
Volume 7, Issue 12, Pages (January 1999)
Crystal structure of vancomycin
Volume 8, Issue 12, Pages (December 2000)
Volume 9, Issue 2, Pages (February 2002)
Volume 8, Issue 3, Pages (September 2001)
Conformational Changes of the Flavivirus E Glycoprotein
Crystallographic Structure of SurA, a Molecular Chaperone that Facilitates Folding of Outer Membrane Porins  Eduard Bitto, David B. McKay  Structure 
Structure of unliganded HIV-1 reverse transcriptase at 2
Kristopher Josephson, Naomi J. Logsdon, Mark R. Walter  Immunity 
The crystal structure of bovine bile salt activated lipase: insights into the bile salt activation mechanism  Xiaoqiang Wang, Chi-sun Wang, Jordan Tang,
by Alexey Dementiev, Abel Silva, Calvin Yee, Zhe Li, Michael T
Crystal structure of mammalian purple acid phosphatase
Crystal structure of human mitochondrial NAD(P)+-dependent malic enzyme: a new class of oxidative decarboxylases  Yingwu Xu, Girija Bhargava, Hao Wu,
Tom Huxford, De-Bin Huang, Shiva Malek, Gourisankar Ghosh  Cell 
Volume 3, Issue 11, Pages (November 1995)
UG Wagner, M Hasslacher, H Griengl, H Schwab, C Kratky  Structure 
Crystal structure of vancomycin
The three-dimensional structure of PNGase F, a glycosyl asparaginase from Flavobacterium meningosepticum  Gillian E Norris, Timothy J Stillman, Bryan.
Volume 8, Issue 3, Pages (March 2000)
Volume 13, Issue 5, Pages (November 2000)
Crystal Structure at 2.8 Å of an FcRn/Heterodimeric Fc Complex
West Nile Virus Core Protein
Crystal Structures of a Novel Ferric Reductase from the Hyperthermophilic Archaeon Archaeoglobus fulgidus and Its Complex with NADP+  Hsiu-Ju Chiu, Eric.
Structure of Cry2Aa Suggests an Unexpected Receptor Binding Epitope
Structure of mammalian ornithine decarboxylase at 1
Crystal Structure of the Human High-Affinity IgE Receptor
N Khazanovich, KS Bateman, M Chernaia, M Michalak, MNG James  Structure 
Volume 84, Issue 2, Pages (February 2003)
Munirathinam Sundaramoorthy, James Terner, Thomas L Poulos  Structure 
Stacy D Benson, Jaana K.H Bamford, Dennis H Bamford, Roger M Burnett 
Crystal Structure of Recombinant Human Interleukin-22
Andrew H. Huber, W.James Nelson, William I. Weis  Cell 
The Crystal Structure of the Costimulatory OX40-OX40L Complex
Daniel Peisach, Patricia Gee, Claudia Kent, Zhaohui Xu  Structure 
The 1.8 Å crystal structure of catechol 1,2-dioxygenase reveals a novel hydrophobic helical zipper as a subunit linker  Matthew W Vetting, Douglas H Ohlendorf 
Volume 2, Issue 8, Pages (August 1994)
Volume 17, Issue 3, Pages (September 1996)
Volume 7, Issue 2, Pages (February 1999)
Volume 6, Issue 7, Pages (July 1998)
Volume 6, Issue 3, Pages (March 1998)
The basis for K-Ras4B binding specificity to protein farnesyl-transferase revealed by 2 Å resolution ternary complex structures  Stephen B Long, Patrick.
Volume 3, Issue 8, Pages (August 1995)
Masaru Goto, Rie Omi, Noriko Nakagawa, Ikuko Miyahara, Ken Hirotsu 
Transformation of MutL by ATP Binding and Hydrolysis
West Nile Virus Core Protein
Volume 94, Issue 8, Pages (April 2008)
Volume 6, Issue 1, Pages (January 1998)
Volume 110, Issue 6, Pages (September 2002)
Volume 11, Issue 4, Pages (April 2003)
Volume 85, Issue 5, Pages (May 1996)
Structure of a water soluble fragment of the ‘Rieske’ iron–sulfur protein of the bovine heart mitochondrial cytochrome bc1 complex determined by MAD phasing.
T Barrett, CG Suresh, SP Tolley, EJ Dodson, MA Hughes  Structure 
The crystal structure of an intact human Max–DNA complex: new insights into mechanisms of transcriptional control  P Brownlie, TA Ceska, M Lamers, C Romier,
The 2.0 å structure of a cross-linked complex between snowdrop lectin and a branched mannopentaose: evidence for two unique binding modes  Christine Schubert.
Human glucose-6-phosphate dehydrogenase: the crystal structure reveals a structural NADP+ molecule and provides insights into enzyme deficiency  Shannon.
Stacy D Benson, Jaana K.H Bamford, Dennis H Bamford, Roger M Burnett 
Volume 13, Issue 5, Pages (May 2005)
Pingwei Li, Gerry McDermott, Roland K. Strong  Immunity 
Volume 8, Issue 9, Pages (September 2000)
Kristopher Josephson, Naomi J. Logsdon, Mark R. Walter  Immunity 
Volume 6, Issue 8, Pages (August 1998)
Volume 7, Issue 12, Pages (January 1999)
Volume 6, Issue 3, Pages (March 1998)
Volume 5, Issue 6, Pages (June 1997)
The Structure of T. aquaticus DNA Polymerase III Is Distinct from Eukaryotic Replicative DNA Polymerases  Scott Bailey, Richard A. Wing, Thomas A. Steitz 
Volume 8, Issue 8, Pages (August 2000)
Stanley J Watowich, John J Skehel, Don C Wiley  Structure 
Presentation transcript:

Volume 8, Issue 9, Pages 927-936 (September 2000) Observation of an unexpected third receptor molecule in the crystal structure of human interferon-γ receptor complex  DJ Thiel, M-H le Du, RL Walter, A D’Arcy, C Chène, M Fountoulakis, G Garotta, FK Winkler, SE Ealick  Structure  Volume 8, Issue 9, Pages 927-936 (September 2000) DOI: 10.1016/S0969-2126(00)00184-2

Figure 1 Ribbon diagram of the 3:1 sIFN-γRα–IFN-γ complex. The complex is formed by combining the 2:1 complex with receptor R3. The IFN-γ dimer (I1 and I2) is shown in yellow; the R1 receptor is in red, the R2 receptor in blue, and the R3 receptor in green. The complex is oriented such that the normal axis to the cell membrane is approximately vertical. Structure 2000 8, 927-936DOI: (10.1016/S0969-2126(00)00184-2)

Figure 2 Structure of sIFN-γRα. (a) Stereoview Cα trace for sIFN-γRα with every tenth residue labeled. (b) Superposition of the three sIFN-γRα molecules. The superposition of the receptor molecules is based on the D2 domain only. Variations of the hinge angle between the D1 and D2 domains of each receptor is shown. The R1 receptor is in red, the R2 receptor in blue, and the R3 receptor in green. Structure 2000 8, 927-936DOI: (10.1016/S0969-2126(00)00184-2)

Figure 3 Electron density in the region of expected glycosylation. The final 2Fo–Fc map, contoured at 1.2σ, shows weak glycosylation density branching from Asn62 of the R2 receptor. Other potential glycosylation sites show similar electron density. Structure 2000 8, 927-936DOI: (10.1016/S0969-2126(00)00184-2)

Figure 4 Crystal contacts involving D2 receptor domains. (a) Receptor R3 is shown in green bridging receptor R1 (red) and a symmetry-related receptor R2′ (magenta). (b) Receptor R2 is shown in blue and an R2 receptor related by twofold symmetry (R2′) is shown in magenta. These interactions form the primary packing contacts in the crystals of the complex. Structure 2000 8, 927-936DOI: (10.1016/S0969-2126(00)00184-2)

Figure 5 The R3–R1 parallel β-sheet interface. The portion of the interface consisting of R1 residues is shown in red and that of R3 is in green. Key residues are labeled. Structure 2000 8, 927-936DOI: (10.1016/S0969-2126(00)00184-2)