Why Seeing Is Believing: Merging Auditory and Visual Worlds

Slides:



Advertisements
Similar presentations
Heterogeneous Coding of Temporally Discounted Values in the Dorsal and Ventral Striatum during Intertemporal Choice  Xinying Cai, Soyoun Kim, Daeyeol.
Advertisements

Neuroscience: What You See and Hear Is What You Get
Grid Cells for Conceptual Spaces?
Neural Gallops across Auditory Streams
Signal, Noise, and Variation in Neural and Sensory-Motor Latency
Efficient Receptive Field Tiling in Primate V1
Lav R. Varshney, Per Jesper Sjöström, Dmitri B. Chklovskii  Neuron 
A Vestibular Sensation: Probabilistic Approaches to Spatial Perception
Choice Certainty Is Informed by Both Evidence and Decision Time
Cooperative Nonlinearities in Auditory Cortical Neurons
Volume 66, Issue 6, Pages (June 2010)
Braden A. Purcell, Roozbeh Kiani  Neuron 
Volume 87, Issue 1, Pages (July 2015)
Yu-Cheng Pei, Steven S. Hsiao, James C. Craig, Sliman J. Bensmaia 
Alteration of Visual Perception prior to Microsaccades
Michael L. Morgan, Gregory C. DeAngelis, Dora E. Angelaki  Neuron 
Volume 55, Issue 3, Pages (August 2007)
Probabilistic Population Codes for Bayesian Decision Making
Sensitivity to Complex Statistical Regularities in Rat Auditory Cortex
Feature- and Order-Based Timing Representations in the Frontal Cortex
Confidence as Bayesian Probability: From Neural Origins to Behavior
CA3 Retrieves Coherent Representations from Degraded Input: Direct Evidence for CA3 Pattern Completion and Dentate Gyrus Pattern Separation  Joshua P.
A Switching Observer for Human Perceptual Estimation
Attentional Modulations Related to Spatial Gating but Not to Allocation of Limited Resources in Primate V1  Yuzhi Chen, Eyal Seidemann  Neuron  Volume.
Cascade Models of Synaptically Stored Memories
Young Children Do Not Integrate Visual and Haptic Form Information
Volume 49, Issue 3, Pages (February 2006)
Volume 66, Issue 4, Pages (May 2010)
Gordon B. Smith, David E. Whitney, David Fitzpatrick  Neuron 
Volume 71, Issue 4, Pages (August 2011)
Adaptation Disrupts Motion Integration in the Primate Dorsal Stream
Huihui Zhou, Robert Desimone  Neuron 
Volume 54, Issue 6, Pages (June 2007)
Liu D. Liu, Christopher C. Pack  Neuron 
Human Orbitofrontal Cortex Represents a Cognitive Map of State Space
Peter Kok, Janneke F.M. Jehee, Floris P. de Lange  Neuron 
Sparseness and Expansion in Sensory Representations
Franco Pestilli, Marisa Carrasco, David J. Heeger, Justin L. Gardner 
A. Saez, M. Rigotti, S. Ostojic, S. Fusi, C.D. Salzman  Neuron 
Independent Category and Spatial Encoding in Parietal Cortex
A Switching Observer for Human Perceptual Estimation
Katherine M. Armstrong, Jamie K. Fitzgerald, Tirin Moore  Neuron 
Optimizing Neural Information Capacity through Discretization
Medial Axis Shape Coding in Macaque Inferotemporal Cortex
Volume 45, Issue 5, Pages (March 2005)
The Ventriloquist Effect Results from Near-Optimal Bimodal Integration
Lav R. Varshney, Per Jesper Sjöström, Dmitri B. Chklovskii  Neuron 
Cian O’Donnell, Terrence J. Sejnowski  Neuron 
Value-Based Modulations in Human Visual Cortex
Franco Pestilli, Marisa Carrasco, David J. Heeger, Justin L. Gardner 
Timescales of Inference in Visual Adaptation
Daniel E. Winkowski, Eric I. Knudsen  Neuron 
Volume 76, Issue 4, Pages (November 2012)
The Normalization Model of Attention
Volume 72, Issue 6, Pages (December 2011)
Gordon B. Smith, David E. Whitney, David Fitzpatrick  Neuron 
Does Neuronal Synchrony Underlie Visual Feature Grouping?
Masayuki Matsumoto, Masahiko Takada  Neuron 
Supervised Calibration Relies on the Multisensory Percept
Cortical Cliques: A Few Plastic Neurons Get All the Action
When Correlation Implies Causation in Multisensory Integration
Cell Assemblies of the Superficial Cortex
Volume 74, Issue 1, Pages (April 2012)
Volume 99, Issue 1, Pages e4 (July 2018)
Volume 66, Issue 4, Pages (May 2010)
Supratim Ray, John H.R. Maunsell  Neuron 
Christophe Micheyl, Biao Tian, Robert P. Carlyon, Josef P. Rauschecker 
Eric A. Finkel, Daniel H. O’Connor  Neuron 
Efficient Receptive Field Tiling in Primate V1
Cortical Maps: Where Theory Meets Experiments
Presentation transcript:

Why Seeing Is Believing: Merging Auditory and Visual Worlds Ilana B. Witten, Eric I. Knudsen  Neuron  Volume 48, Issue 3, Pages 489-496 (November 2005) DOI: 10.1016/j.neuron.2005.10.020 Copyright © 2005 Elsevier Inc. Terms and Conditions

Figure 1 Schematics of Posterior Probability Distributions and Psychometric Functions for the Localization of Visual, Auditory, and Bimodal Stimuli (A and B) Auditory posterior probability distribution (blue) and visual posterior probability distribution (red) have equal variances. The bimodal distribution (black) is the product of the two unimodal distributions. (A) The variances of the auditory and visual distributions are equal. (B) The auditory variance is greater than the visual variance. The dashed vertical lines indicate the maximum of the corresponding posterior distributions (MAP estimates). (C and D) Psychometric functions corresponding to the probability distributions in (A) and (B), based on data from Alais and Burr (2004). The ordinate is the proportion of trials in which a subject perceives the test stimulus to the right of a reference stimulus; the abscissa is the position of the test stimulus. The reference auditory stimulus is positioned at the blue arrow (−2.5°); the reference visual stimulus is positioned at the red arrow (2.5°). The bimodal stimulus consists of an auditory and a visual stimulus separated by 5°. The vertical lines intersect the psychometric functions at the 50% level. Neuron 2005 48, 489-496DOI: (10.1016/j.neuron.2005.10.020) Copyright © 2005 Elsevier Inc. Terms and Conditions

Figure 2 Candidate Neural Codes for Posterior Distributions (A) Posterior probability distributions with a high variance (blue) and a low variance (red). (B–D) Response profiles across a neural map of space that could encode the high and low variance probability distributions in (A). The red response profiles encode the red probability distribution in (A), the blue response profiles encode the blue distribution in (A). (B) Firing rates across the neural map are proportional to the posterior probability distribution. (C) The variability of firing rates (error bars) is directly related to the variance of the corresponding posterior distribution. (D) The strength of responses across the neural map is inversely proportional to the variance of the corresponding posterior distribution. Neuron 2005 48, 489-496DOI: (10.1016/j.neuron.2005.10.020) Copyright © 2005 Elsevier Inc. Terms and Conditions

Figure 3 Plasticity Instructed by Optimal Bimodal Integration Large circles symbolize neurons that are arranged to represent space topographically. A visual layer and an auditory layer project to a bimodal map, such as in the optic tectum. Higher firing rates are denoted by darker colors. The size of the small filled circles symbolizes synaptic strength. (A) Aligned visual and auditory representations. The bimodal response profile resembles both unimodal representations. (B) Misaligned visual and auditory representations. The bimodal response profile is more similar to the visual representation. (C) Repeated experience with consistently misaligned unimodal representations, as in (B), leads to plasticity largely in the strength of the auditory synapses onto bimodal neurons. Neuron 2005 48, 489-496DOI: (10.1016/j.neuron.2005.10.020) Copyright © 2005 Elsevier Inc. Terms and Conditions