IEEE Device Research Conference, June , Notre Dame

Slides:



Advertisements
Similar presentations
ESD Evaluation of the Emerging MuGFET Technology
Advertisements

Intel’s Low Power Technology
by Alexander Glavtchev
Alain Espinosa Thin Gate Insulators Nanoscale Silicon Technology PresentersTopics Mike DuffyDouble-gate CMOS Eric DattoliStrained Silicon.
6.1 Transistor Operation 6.2 The Junction FET
Improved Migration-Enhanced Epitaxy for Self-Aligned InGaAs Devices Electronic Materials Conference (EMC), Mark A. Wistey University of California,
High-K Dielectrics The Future of Silicon Transistors
Zhang Xintong 11/26/2014 Process technologies for making FinFETs.
High performance 110 nm InGaAs/InP DHBTs in dry-etched in-situ refractory emitter contact technology Vibhor Jain, Evan Lobisser, Ashish Baraskar, Brian.
2007 DRC Ultra Low Resistance Ohmic Contacts to InGaAs/InP Uttam Singisetti*, A.M. Crook, E. Lind, J.D. Zimmerman, M. A. Wistey, M.J.W. Rodwell, and A.C.
1 InGaAs/InP DHBTs demonstrating simultaneous f t / f max ~ 460/850 GHz in a refractory emitter process Vibhor Jain, Evan Lobisser, Ashish Baraskar, Brian.
Device Research Conference 2011
In-situ and Ex-situ Ohmic Contacts To Heavily Doped p-InGaAs TLM Fabrication by photolithography and liftoff Ir dry etched in SF 6 /Ar with Ni as etch.
1 Uttam Singisetti*, Man Hoi Wong, Jim Speck, and Umesh Mishra ECE and Materials Departments University of California, Santa Barbara, CA 2011 Device Research.
1 Scalable E-mode N-polar GaN MISFET devices and process with self-aligned source/drain regrowth Uttam Singisetti*, Man Hoi Wong, Sansaptak Dasgupta, Nidhi,
NAMBE 2010 Ashish Baraskar, UCSB 1 In-situ Iridium Refractory Ohmic Contacts to p-InGaAs Ashish Baraskar, Vibhor Jain, Evan Lobisser, Brian Thibeault,
DRC mS/  m In 0.53 Ga 0.47 As MOSFET with 5 nm channel and self-aligned epitaxial raised source/drain Uttam Singisetti*, Mark A. Wistey, Greg.
IPRM 2010 Ashish Baraskar 1 High Doping Effects on in-situ Ohmic Contacts to n-InAs Ashish Baraskar, Vibhor Jain, Uttam Singisetti, Brian Thibeault, Arthur.
Ashish Baraskar 1, Mark A. Wistey 3, Evan Lobisser 1, Vibhor Jain 1, Uttam Singisetti 1, Greg Burek 1, Yong Ju Lee 4, Brian Thibeault 1, Arthur Gossard.
2010 Electronic Materials Conference Ashish Baraskar June 23-25, 2010 – Notre Dame, IN 1 In-situ Ohmic Contacts to p-InGaAs Ashish Baraskar, Vibhor Jain,
1 InGaAs/InP DHBTs in a planarized, etch-back technology for base contacts Vibhor Jain, Evan Lobisser, Ashish Baraskar, Brian J Thibeault, Mark Rodwell.
1 Interface roughness scattering in ultra-thin GaN channels in N-polar enhancement-mode GaN MISFETs Uttam Singisetti*, Man Hoi Wong, Jim Speck, and Umesh.
1 In 0.53 Ga 0.47 As MOSFETs with 5 nm channel and self-aligned source/drain by MBE regrowth Uttam Singisetti PhD Defense Aug 21, 2009 *
J. H. Woo, Department of Electrical & Computer Engineering Texas A&M University GEOMETRIC RELIEF OF STRAINED GaAs ON NANO-SCALE GROWTH AREA.
280 GHz f T InP DHBT with 1.2  m 2 base-emitter junction area in MBE Regrown-Emitter Technology Yun Wei*, Dennis W. Scott, Yingda Dong, Arthur C. Gossard,
Advanced Process Integration
Figure 9.1. Use of silicon oxide as a masking layer during diffusion of dopants.
Metallization: Contact to devices, interconnections between devices and to external Signal (V or I) intensity and speed (frequency response, delay)
Szu-Wei Huang, C-V Lab, GIEE of NTU 1 黃 思 維 F Graduate Institute of Electronics Engineering National Taiwan University Advanced Multi-Gate Technologies.
Nanometer InP Electron Devices for VLSI and THz Applications
Prospects for High-Aspect-Ratio FinFETs in Low-Power Logic Mark Rodwell, Doron Elias University of California, Santa Barbara 3rd Berkeley Symposium on.
2010 IEEE Device Research Conference, June 21-23, Notre Dame, Indiana
Comparison of Ultra-Thin InAs and InGaAs Quantum Wells and
Nanotechnology on our Desktops Hard Disk Sensor Medium Transistor Gate SourceDrain Switching layer 5 nm Magnetic grain 10 nm Gate oxide 4 nm Well 6 nm.
1 III-V MOS: Record-Performance Thermally-Limited Devices, Prospects for High-On-Current Steep Subthreshold Swing Devices Mark Rodwell, UCSB IPRM/ISCS.
© 2008, Reinaldo Vega UC Berkeley Top-Down Nanowire and Nano- Beam MOSFETs Reinaldo Vega EE235 April 7, 2008.
SEMINAR PRESENTATION ON IC FABRICATION PROCESS PREPARED BY: GUIDED BY: VAIBHAV RAJPUT(12BEC102) Dr. USHA MEHTA SOURABH JAIN(12BEC098)
III-V MOSFETs: Scaling Laws, Scaling Limits,Fabrication Processes A. D. Carter, G. J. Burek, M. A. Wistey*, B. J. Thibeault, A. Baraskar, U. Singisetti,
Device Research Conference, 2005 Zach Griffith and Mark Rodwell Department of Electrical and Computer Engineering University of California, Santa Barbara,
12 nm-Gate-Length Ultrathin-Body InGaAs/InAs MOSFETs with 8
2009 Electronic Materials Conference Ashish Baraskar June 24-26, 2009 – University Park, PA 1 High Doping Effects on In-situ and Ex-situ Ohmic Contacts.
Technology Development for InGaAs/InP-channel MOSFETs
Ultrathin InAs-Channel MOSFETs on Si Substrates Cheng-Ying Huang 1, Xinyu Bao 2, Zhiyuan Ye 2, Sanghoon Lee 1, Hanwei Chiang 1, Haoran Li 1, Varistha Chobpattana.
Improved Regrowth of Self-Aligned Ohmic Contacts for III-V FETs North American Molecular Beam Epitaxy Conference (NAMBE), Mark A. Wistey Now at.
III-V CMOS: Device Design & Process Flows , fax ESSDERC Workshop on Germanium and III-V MOS Technology, Sept.
Device Research Conference 2007 Erik Lind, Adam M. Crook, Zach Griffith, and Mark J.W. Rodwell Department of Electrical and Computer Engineering University.
III-V MOS: Planar and Fin Technologies 2014 MRS Spring Meeting, April 23, San Francisco. M.J.W. Rodwell, UCSB III-V MOS: S. Lee, C.-Y. Huang, D. Elias,
Atomic Layer Deposition - ALD
Process Technologies For Sub-100-nm InP HBTs & InGaAs MOSFETs M. A. Wistey*, U. Singisetti, G. J. Burek, B. J. Thibeault, A. Baraskar, E. Lobisser, V.
Uttam Singisetti. , Mark A. Wistey, Greg J. Burek, Ashish K
ISCS 2008 InGaAs MOSFET with self-aligned Source/Drain by MBE regrowth Uttam Singisetti*, Mark A. Wistey, Greg J. Burek, Erdem Arkun, Ashish K. Baraskar,
Fatemeh (Samira) Soltani University of Victoria June 11 th
A Self-Aligned Epitaxial Regrowth Process for Sub-100-nm III-V FETs A. D. Carter, G. J. Burek, M. A. Wistey*, B. J. Thibeault, A. Baraskar, U. Singisetti,
Guided by: Prof.J.D.PRADHAN Submitted By: K.Anurag Regn no:
Weekly Group Meeting Report
14NM FINFET IN MICROWIND.
Making better transistors: beyond yet another new materials system
MoS2 RF Transistor Suki Zhang 02/15/17.
Contact Resistance Modeling and Analysis of HEMT Devices S. H. Park, H
Lower Limits To Specific Contact Resistivity
Device Research Conference, June 19, 2012
by Alexander Glavtchev
Contact Resistance Modeling in HEMT Devices
High Transconductance Surface Channel In0. 53Ga0
PHYSICS OF SEMICONDUCTOR DEVICES II
Nanowire Gate-All-Around (GAA) FETs
Volume 2, Issue 1, Pages 1-4 (January 2018)
Record Extrinsic Transconductance (2. 45 mS/μm at VDS = 0
Presentation transcript:

IEEE Device Research Conference, June 24-27 2013, Notre Dame Formation of Sub-10 nm width InGaAs finFETs of 200 nm Height by Atomic Layer Epitaxy *D. Cohen-Elias1, J.J.M. Law1, H.W. Chiang1, A. Sivananthan1, C. Zhang1, B. J. Thibeault1, W.J. Mitchell1, S. Lee1, A.D. Carter1, C.-Y. Huang1, V. Chobpattana2, S. Stemmer2, S. Keller1, M. J.W. Rodwell1 1ECE and 2Materials Departments University of California, Santa Barbara, CA

Goal: FinFET with 2-4 nm Body Thickness Intel Lg=60nm III-V FinFET (IEDM 2011) 30 nm fin: too thick at 60 nm gate length For good electrostatics, need fin thickness ~ (gate length/2) S. H. Park et al., NNIN Symposium Feb 2012. 8nm gate length → need <4 nm thick fin

Goal: Tall Fins for High Drive Current Goal: large on-current from small transistor footprint. Height Pitch S D Transistor Width Jsurf Goal: fin height >> fin pitch (spacing)

Goal: Fins with Integrated N+ Source/Drain regrowth→ small S/D pitch → High Integration Density

Why Not Dry-Etch a 2nm Fin ? Goal: 2-4 nm thickness, 100+ nm height *metallization-induced damage increases Dit: Burek et al, JVST B. 29,4, Jul/Aug 2011; Dry-etching may well do similar surface damage serious process challenges

FinFETs by Atomic Layer Epitaxy Fin thickness defined by Atomic layer epitaxy (ALE) → nm thickness control HfO2 Fin ~8nm Fin height defined by sidewall growth TiN → 200 nm high fins thin, tall fins → few-nm Lg , high currents

ALE-Defined finFET: Process Flow Fin Template Channel ALE Dummy Gate Gate Dielectric Gate Metal S/D Metal Release Fins S/D Regrowth

Fin Template (011) SiN hard mask: Ridges oriented along [011] H3PO4 : HCL etch: facet-selective, material-selective forms vertical (011) sidewalls stops on InGaAs etch-stop InGaAs etch-stop: defines template height→ defines fin height

Channel Growth by Atomic Layer Epitaxy 1 monolayer growth per cycle. InGaAs monolayer ~ 2.9A → S.P. DenBaars, P.D. Dapkus Journal of Crystal Growth, 98 (1989) TBA flow H2 flow TMI+ TMGa flow H2 flow → → → Using UCSB MOCVD : 1.7 Monolayer of InGaAs / Cycle (Not true ALE mode)

Channel Growth by Atomic Layer Epitaxy lattice-matched InGaAs 20 ALE cycles → <10 nm channel Masked growth: no InGaAs growth on top of template Details: one ALE cycle = 10 sec TMGa/TMI, 10 sec H2 , 10 sec TBAs, 10 sec H2 450 C growth

Dummy Gate: Patterns Source and Drain HSQ Mask HSQ* : E-beam definable SiO2 ALD Al2O3 mask sub-layer: adhesion *HSQ: Hydrogen silsesquioxane

Source Drain Regrowth Drain HSQ Source MOCVD Regrowth 600C lattice-matched N+ InGaAs, 5*1019/cm3 doping

S/D Regrowth: Filling vs. Sidewall Regrowth Present process: S/D regrowth partly fills spaces between fins Target process: S/D sidewall regrowth by ALE → large contact area → low access resistance

Source Drain Regrowth Drain HSQ Source

Fin Release fin release: H3PO4:HCl selective wet-etch etches InP stops on InGaAs

Fin Release N+ fin without N+ regrowth fin with N+ regrowth N+

Why Not Release Fins Before S/D Regrowth ? Images of released ~10 nm fins: S/D regrowth provides mechanical support

ALD Gate Dielectric, ALD Gate Metal HfO2 and TiN ALD gate Stack Source Drain

Source and Drain Metal Gate Source Metal Drain Metal

TEM Images HfO2 Fin ~8nm TiN

Where is the DC Data ? Planar InAs/InGaAs MOSFET Present finFETs: very high leakage Planar FET: thermal Ni gate finFET: ALD TiN gate interface damage ? Planar FET: 100 interface finFET: 011 interfaces ALD surface preparation ? Lee et al, 2013 VLSI symposium

3-D Transistors to Extend Moore's Law Lundstrom: high S/D tunneling @ 4-7 nm Lg → increase m* as Lg decreases Implication: FETs won’t improve with scaling increased m* → decreased vinj → decreased Ion , increased CV/I If we scale only to increase the IC packing density, why reduce Lg ? Alternative: 3-D integration ...or other geometries... height>> pitch

FinFETs by Atomic Layer Epitaxy ALE-defined fin → few-nm thick channels → scaling to 8nm gate length HfO2 Fin ~8nm 200 nm fin height →enhance drive current TiN Jsurf Jsurf Jsurf Jsurf D S

Thank You