BOOLEAN ALGEBRA. A Mathematical notation used to represent the function of the Digital circuit. A notation that allows variables & constants to have only.

Slides:



Advertisements
Similar presentations
Boolean Algebra and Logic Gates
Advertisements

EET 1131 Unit 5 Boolean Algebra and Reduction Techniques
Digital Logic Design Gate-Level Minimization
ECE 238L Computer Logic Design Spring 2010
Chapter 2 Logic Circuits.
Boolean Algebra and Combinational Logic
CS 151 Digital Systems Design Lecture 6 More Boolean Algebra A B.
1 Section 10.1 Boolean Functions. 2 Computers & Boolean Algebra Circuits in computers have inputs whose values are either 0 or 1 Mathematician George.
EET 1131 Unit 5 Boolean Algebra and Reduction Techniques
Chapter 2: Combinatorial Logic Circuits Illustration Pg. 32 Logic Circuit Diagrams - Circuit Optimization -2,3,4 level maps 48 elements Optimized to 25.
Boolean Algebra and Logic Simplification
Chapter 2: Boolean Algebra and Logic Functions
Boolean Algebra. Binary Logic and Gates Binary variables take on one of two values. Logical operators operate on binary values and binary variables. Basic.
1 Why study Boolean Algebra? 4 It is highly desirable to find the simplest circuit implementation (logic) with the smallest number of gates or wires. We.
Chapter 2 Combinational Systems And / Or / Not. TRIAD PRINCIPLE: Combinational is about And / Or / Not combinations As well as equivalent functions. It.
1 Logic Gates Digital Computer Logic Kashif Bashir WWW:
Lecture 2 – Boolean Algebra Lecturer: Amy Ching Date: 21 st Oct 2002.
BOOLEAN ALGEBRA Saras M. Srivastava PGT (Computer Science)
Boolean Algebra and Digital Circuits
F = ∑m(1,4,5,6,7) F = A’B’C+ (AB’C’+AB’C) + (ABC’+ABC) Use X’ + X = 1.
1 Digital Logic Design Week 5 Simplifying logic expressions.
Combinational Logic 1.
Dr. Eng. Farag Elnagahy Office Phone: King ABDUL AZIZ University Faculty Of Computing and Information Technology CPCS 222.
CHAPTER 3: PRINCIPLES OF COMBINATIONAL LOGIC
Lecture 4 Nand, Nor Gates, CS147 Circuit Minimization and
LOGIC GATES & BOOLEAN ALGEBRA
Venn Diagram – the visual aid in verifying theorems and properties 1 E.
Discrete Mathematics CS 2610 September Equal Boolean Functions Two Boolean functions F and G of degree n are equal iff for all (x 1,..x n )  B.
ENGIN112 L6: More Boolean Algebra September 15, 2003 ENGIN 112 Intro to Electrical and Computer Engineering Lecture 6 More Boolean Algebra A B.
ece Parity Used to check for errors Can be either ODD or EVEN Left most bit used as the indicator For EVEN, insert a 0 or a 1 so as to make the.
Computer Systems 1 Fundamentals of Computing Simplifying Boolean Expressions.
LOGIC CIRCUITLOGIC CIRCUIT. Goal To understand how digital a computer can work, at the lowest level. To understand what is possible and the limitations.
1 Lect # 2 Boolean Algebra and Logic Gates Boolean algebra defines rules for manipulating symbolic binary logic expressions. –a symbolic binary logic expression.
Boolean Algebra & Logic Circuits Dr. Ahmed El-Bialy Dr. Sahar Fawzy.
Floyd, Digital Fundamentals, 10 th ed Digital Fundamentals Tenth Edition Floyd Chapter 4 © 2008 Pearson Education.
Chapter 2 Boolean Algebra and Minimization Techniques.
DKT 122/3 - DIGITAL SYSTEM I Chapter 4A:Boolean Algebra and Logic Simplification) Mohd ridzuan mohd nor
Karnaugh Map and Circuit Design.
BOOLEAN ALGEBRA AND LOGIC SIMPLIFICATION
CHAPTER 1 INTRODUCTION TO DIGITAL LOGIC
Lecture 18: Boolean Algebra Boolean Functions. w = Chris is allowed to watch television x = Chris's homework is finished y = it is a school night z =
ECEN 248: INTRODUCTION TO DIGITAL SYSTEMS DESIGN Lecture 4 Dr. Shi Dept. of Electrical and Computer Engineering.
ECE DIGITAL LOGIC LECTURE 8: BOOLEAN FUNCTIONS Assistant Prof. Fareena Saqib Florida Institute of Technology Spring 2016, 02/11/2016.
Lecture 5 More Boolean Algebra A B. Overview °Expressing Boolean functions °Relationships between algebraic equations, symbols, and truth tables °Simplification.
CHAPTER 2 Boolean algebra and Logic gates
EET 1131 Unit 5 Boolean Algebra and Reduction Techniques
CHAPTER 3 Simplification of Boolean Functions
Lecture 4 Nand, Nor Gates, CS147 Circuit Minimization and
Chapter 2: Boolean Algebra and Logic Functions
DeMorgan’s Theorem DeMorgan’s 2nd Theorem
ECE 2110: Introduction to Digital Systems
CS 105 Digital Logic Design
CHAPTER 2 Boolean Algebra
Overview Part 1 – Gate Circuits and Boolean Equations
Boolean Algebra and Combinational Logic
Princess Sumaya University
Karnaugh Maps.
ECE 331 – Digital System Design
Boolean Algebra Why study Boolean Algebra?
Boolean Algebra.
Boolean Algebra.
Lecture 14: Boolean Algebra
Chapter 2 Boolean Algebra and Logic Gate
BASIC & COMBINATIONAL LOGIC CIRCUIT
Karnaugh Mapping Digital Electronics
BOOLEAN ALGEBRA AND LOGIC SIMPLIFICATION Part (a)
Analysis of Logic Circuits Example 1
Analysis of Logic Circuits Example 1
Circuit Simplification and
Computer Architecture
Presentation transcript:

BOOLEAN ALGEBRA

A Mathematical notation used to represent the function of the Digital circuit. A notation that allows variables & constants to have only 2 possible values 0 & 1. The Term Boolean Algebra honors a fascinating English mathematician; George Boole BOOLEAN FUNCTIONS -- An expression formed with Binary variables the two operators OR & AND & a UNARY operator not parenthesis & equal sign for the given variables the function can either be One or Zero.

EQUATION No.BOOLEAN EQUATIONDESCRIPTION 1 X + Y = Y + X Commutative Property XY = YX 2 X + (Y + Z) = (X + Y) + Z Associative Property X(YZ) = (XY)Z 3 X X = X Idempotent Property X + X = X 4 X 1 = X Identity Property X + 1 = 1 5 X 0 = 0 Null Property X + 0 = X 6 X (Y + Z) = XY + XZ Distributive Property (XY) + (XZ) = X + YZ 7 X X = 0 Negation Property X + X = 1 8(X) = XDouble Negation Property 9 X + XY = X Absorption Property X (X + Y) = X X + (XY) = X + Y

BOOLEAN ALGEBRA The Rules of Boolean Algebra : AND Operations (·) 0·0 = 0 A·0 = 0 1·0 = 0 A·1 = A 0·1 = 0 A·A = A 1·1 = 1 A·A' = 0 OR Operations (+) 0+0 = 0 A+0 = A 1+0 = 1 A+1 = = 1 A+A = A 1+1 = 1 A+A' = 1 NOT Operations (') 0' = 1 A'' = A 1' = 0 Associative Law (A·B)·C = A·(B·C) = A·B·C (A+B)+C = A+(B+C) = A+B+C Distributive Law A·(B+C) = (A·B) + (A·C) A+(B·C) = (A+B) · (A+C) Commutative Law A·B = B·A A+B = B+A Precedence AB = A·B A·B+C = (A·B) + C A+B·C = A + (B·C) DeMorgan's Theorem (A·B)' = A' + B' (NAND) (A+B)' = A' · B' (NOR)

DE MORGANS THEOREM A mathematician named De Morgan developed a pair of important rules regarding group terms complementation in Boolean algebra. He states that inversion or negation of a Boolean expression may be accomplished by negating each variable and changing each AND to OR each OR to AND.

De Morgans Theorem Equations Is equivalent to (xy) = x + y (x+y ) = xy

This statement can be further summarized to: The First Theorem states that a NOR gate is Equivalent to a bubbled AND gate. The second Theorem States that a NAND Gate is equivalent to a Bubbled OR Gate. In these rule, two procedures are used to form a complement. The (+) symbol are replaced with (·) symbol or absence of operation, and (·)symbols with (+) symbol. Each term in the expression is then complemented. (A·B)' = A' + B' (NAND) (A+B)' = A' · B' (NOR )

NAND and NOR GATE IMPLEMENTATION

Another way of simplifying the circuit by using only the universal gates, NAND and NOR. NAND and NOR are known to be Universal Gates because they can function as other gates

BASIC GATES NAND Gate Implementation NOR Gate Implementation NOT Gate OR Gate AND Gate

Forms of Boolean Function

12 FORMS OF FUNCTIONS: CANONICAL Forms Boolean function expressed as Sum of Minterms or Product of Maxterms 1.MINTERM (denoted by lower case m) A single variable or product of several variables which may or may not be complemented A boolean expression containing ANDed Terms Example: A, AB, ABC F= A + AB + ABC

MAXTERM (denoted by the uppercase M) A single variable or sum of several variables A Boolean expression containing OR Terms. Example: A, A+B, A+B + C (A) (A+B) (A+B) (A + B + C) (A + B + C) 13 FORMS OF EQUATIONS:

MINTERM: F = ABC + ABC + A B C F( A,B,C ) = Σ m3 + m4 + m1 MAXTERM: F = (A+B+C) ( A+B+C )(A+ B +C) F( A,B,C ) = Π M4 + M3 + M6 MINTERM & MAXTERM Samples:

Sample Problem: MINTERM & MAXTERM Samples:

Standard Form of Equation: The term that form the function may be one or any number or literal. TWO TYPES: Sum of Product (SOP) A Boolean expression containing AND terms called PRODUCT of TERMS (one or more literals) Ex: F=Y + XY+XYZ PRODUCT OF SUM (POS) A Boolean expression containing OR terms called sum term. Each term may have any number of literals Ex: F=(X+Y) + (Y+Z)(X+YZ) SOP & POS Equations:

The Map Method K-MAPPING (Karnaugh) - Map a diagram made up of squares represents one minterm KARNAUGH MAP A chart or grid containing boxes called cells; each which represents one minterm. TYPES of MAP 1.Two Variable Map Consists of two variables 2. Three Variable Map A three variable map plotted in a map 3. FOUR Variable Map

K-MAPPING (Karnaugh) Steps: Construct the K-Map & place 1s in the squares corresponding to 1s in truth table;place zeros in the other squares. Examine the map for adjacent 1s & loop those 1s which are not adjacent to any other ones. Looping continue as there are pairs octet or quad that contains 1. You can still loop the one that is already looped if there are still other 1s left. Form the OR sum of all terms generated by each loop.

K-MAPPING (Karnaugh) The values of one variable appear across the top of the map, defining the column values, while the values of the other variable appear at the side, defining the values of the variable in each row. The Karnaugh map for the OR gate is completed by entering a '1' in each of the appropriate cells. Usually, you don't write in the '0's'. Within the map, adjacent cells containing 1's are grouped together in twos, fours, or eights. In this case, there is one horizontal and on vertical group of two. You indicate these groupings by drawing a circle round each one. The horizontal group corresponds to a B value of 1. In the left hand cell, A=0 and in the right hand cell, A=1. In other words, the value of A does not affect the outcome of the Boolean expression for these cells.

K-MAPPING (Karnaugh)

K-MAP Types:

K-MAPPING (Karnaugh)

Dont Care conditions: It is represented by a letter (X) in the truth table instead of 0 or 1 The Xs are treated either as 0 or 1s whichever leads to a simpler circuit. Five variable Map: Consists of 5 variables.It uses 32 squares. K-MAPPING (Karnaugh)

Example Dont Care! K-MAPPING (Karnaugh)