A Self-Reference Watermarking Scheme Based on Wet Paper Coding

Slides:



Advertisements
Similar presentations
Fast vector quantization image coding by mean value predictive algorithm Authors: Yung-Gi Wu, Kuo-Lun Fan Source: Journal of Electronic Imaging 13(2),
Advertisements

1 濕影像的資訊隱藏技術 Chair Professor Chin-Chen Chang Feng Chia University National Chung Cheng University National Tsing Hua University
1 影像偽裝術的最新發展 Chair Professor Chin-Chen Chang Feng Chia University National Chung Cheng University National Tsing Hua University.
1 An Efficient VQ-based Data Hiding Scheme Using Voronoi Clustering Authors:Ming-Ni Wu, Puu-An Juang, and Yu-Chiang Li.
1 Information Hiding Based on Search Order Coding for VQ Indices Source: Pattern Recognition Letters, Vol.25, 2004, pp.1253 – 1261 Authors: Chin-Chen Chang,
1 資訊隱藏技術之研究 The Study of Information Hiding Mechanisms 指導教授: Chang, Chin-Chen ( 張真誠 ) 研究生: Lu, Tzu-Chuen ( 呂慈純 ) Department of Computer Science and Information.
基於 (7,4) 漢明碼的隱寫技術 Chair Professor Chin-Chen Chang ( 張真誠 ) National Tsing Hua University National Chung Cheng University Feng Chia University
基於(7,4)漢明碼的隱寫技術 Chair Professor Chin-Chen Chang (張真誠)
基於龜殼魔術矩陣的隱寫技術及其衍生的研究問題
Chair Professor Chin-Chen Chang Feng Chia University Jan. 2008
Information Hiding Technology: Current Research and Future Trend
Visual Secret Sharing Chair Professor Chin-Chen Chang (張真誠)
Der-Chyuan Lou and Jiang-Lung Liu,
An Information Hiding Scheme Using Sudoku
Information Steganography Using Magic Matrix
Chapter 3 向量量化編碼法.
A New Image Compression Scheme Based on Locally Adaptive Coding
Advisor: Chin-Chen Chang1, 2 Student: Yi-Hui Chen2
Chair Professor Chin-Chen Chang Feng Chia University Aug. 2008
Recent Developments on Multimedia and Secure Networking Technologies
Information Steganography Using Magic Matrix
A Color Image Hiding Scheme Based on SMVQ and Modulo Operator
Chair Professor Chin-Chen Chang Feng Chia University
Source :Journal of visual Communication and Image Representation
Chair Professor Chin-Chen Chang Feng Chia University
High-capacity image hiding scheme based on vector quantization
Chair Professor Chin-Chen Chang Feng Chia University
A Data Hiding Scheme Based Upon Block Truncation Coding
第七章 資訊隱藏 張真誠 國立中正大學資訊工程研究所.
Source:Multimedia Tools and Applications, Vol. 77, No. 20, pp , Oct
Hiding Data in a Color Palette Image with Hybrid Strategies
Embedding Secrets Using Magic Matrices
Advisor: Chin-Chen Chang1, 2 Student: Yi-Pei Hsieh2
An Innovative Steganographic Scheme Based on Vector Quantization
A Restricted Region-based Data-hiding Scheme
An Innovative Steganographic Scheme Based on Vector Quantization
The New Developments in Visual Cryptography
Reversible Data Hiding Scheme Using Two Steganographic Images
Chair Professor Chin-Chen Chang (張真誠) National Tsing Hua University
Information Steganography Using Magic Matrix
Dynamic embedding strategy of VQ-based information hiding approach
Chair Professor Chin-Chen Chang Feng Chia University
A Color Image Hiding Scheme Based on SMVQ and Modulo Operator
Hiding Information in VQ Index Tables with Reversibility
Information Hiding and Its Applications
Chair Professor Chin-Chen Chang (張真誠) National Tsing Hua University
Chair Professor Chin-Chen Chang Feng Chia University
Chair Professor Chin-Chen Chang Feng Chia University
Zhe-Ming Lu, Chun-He Liu, Dian-Guo Xu, Sheng-He Sun,
Recent Developments on Multimedia and Secure Networking Technologies
Authors: Chin-Chen Chang, Yi-Hui Chen, and Chia-Chen Lin
A Virtual Image Cryptosystem Based upon Vector Quantization
Chair Professor Chin-Chen Chang Feng Chia University
A Robust and Recoverable Tamper Proofing Technique for Image Authentication Authors: Chin-Chen Chang & Kuo-Lung Hung Speaker : Chin-Chen Chang.
Novel Multiple Spatial Watermarking Technique in Color Images
A Self-Reference Watermarking Scheme Based on Wet Paper Coding
Blind Reversible Authentication Based on PEE and CS Reconstruction
De-clustering and Its Application to Steganography
A Data Hiding Scheme Based Upon Block Truncation Coding
Source: Pattern Recognition, Volume 40, Issue 2, February 2007, pp
Predictive Grayscale Image Coding Scheme Using VQ and BTC
資訊偽裝術 張真誠 講座教授 多媒體暨網路安全實驗室
Information Hiding Techniques Using Magic Matrix
Authors: Chin-Chen Chang, Yi-Hui Chen, and Chia-Chen Lin
Steganographic Systems for Secret Messages
Chair Professor Chin-Chen Chang Feng Chia University Jan. 2008
A New Image Compression Scheme Based on Locally Adaptive Coding
A Quadratic-Residue-based Fragile Watermarking Scheme
A Restricted Region-based Data-hiding Scheme
Hiding Information in VQ Index Tables with Reversibility
Presentation transcript:

A Self-Reference Watermarking Scheme Based on Wet Paper Coding Chair Professor Chin-Chen Chang (張真誠) National Tsing Hua University National Chung Cheng University Feng Chia University http://msn.iecs.fcu.edu.tw/~ccc

Outline Introduction Related works Self-reference watermarking scheme Experimental results Conclusions

Introduction (1/2) Fragile watermarking technique Protect the integrity of image content Detect and locate the tampered areas (a) Original image (b) Tampered image (c) Detected image

Introduction (2/2) Detect and locate the tampered areas Restore the tampered areas (b) Tampered image (c) Detected image (c) Restored image

Related Works — VQ Compression (16, 200, …, 90) 1 (35, 22, …, 100) 2 (40, 255, …, 59) . 254 (90, 102, …, 98) 255 (145, 16, …, 99) 1 60 61 175 … 100 95 203 . . . . Index table Original image Codebook

Vector Quantization (VQ) Codebook Training Codebook generation 1 2 . N-1 Training images Training set Separating all training images to vectors

Vector Quantization (VQ) Codebook Training Codebook generation (Ex: codebook size = 256) 1 . 1 . 254 255 N-1 Initial codebook Training set Codebook initiation

Vector Quantization (VQ) Codebook Training LBG algorithm Training 256 codewords each time K times Until the difference between every two times is smaller than the threshold

An Example of VQ Compression To encode an input vector v = (10, 37, …… , 61, 20) (1) Compute the distance between v with all vectors in codebook d(v, cw0) = 115.8 d(v, cw1) = 86.8 d(v, cw2) = 104.3 d(v, cw3) = 129.1 d(v, cw4) = 91.6 d(v, cw5) = 78.9 d(v, cw6) = 61.5 d(v, cw7) = 98.4 d(v, cw8) = 13.2 ··· d(v, cw255) = 136.3 (2) So, we choose cw8 to replace the input vector v. Index Codewords 3 2 ··· 60 18 1 79 28 11 34 4 10 66 23 7 16 88 12 20 5 22 15 6 9 8 17 39 50 19 255 25 75 Codebook

An Example of VQ Compression

Related Works — Wet Paper Coding Key 1 1 1 Fridrich, J. Goljan, M., Lisonek, P. and Soukal, D.,  “Writing on Wet Paper,” IEEE Transactions on Signal Processing, vol. 53, no. 10, pp. 3923- 3935, 2005.   

An Example of Wet Paper Coding × = ? 21 : 00010101 30 : 00011110 Random Matrix Secret Data LSB of Cover Image The important area is marked as wet pixel 21 30 30 20 : 00010100 30 : 00011110 31 : 00011111 Cover Image 20 30 31 Stego-image

Self-reference watermarking scheme (1/3) Authentication embedding layer : wet pixel i Authentication code : AC = HASH(1000001000001001) = 224 96 89 207 94 86 81 80 88 85 84 83 82 215   Original image 11100000 01100000 01011001 11001111 01011110 01010110 01010001 01010000 01011000 01010101 01010100 01010011 01010010 11010111 13

Secret Key LSB1 AC : wet pixel wet paper coding = = ≠ SK·LSB1 = AC     wet paper coding SK·LSB1 = AC     = SK·LSB1 = ≠ 11100000 01100000 01011001 11001111 01011110 01010110 01010001 01010000 01011000 01010101 01010100 01010011 01010010 11010111 11100000 01100001 01011001 11001111 01011110 01010110 01010001 01011000 01010101 01010100 01010011 11010110 224 96 89 207 94 86 81 80 88 85 84 83 82 215 224 97 89 207 94 86 81 88 85 84 83 214 14

Self-reference watermarking scheme (2/3) Restoration embedding layer VQ Encoding i 1 2 3 127 255 … (120,155,…,80) (100,125,…,150) (217,135,…,120) 1 16 125 72 98 ··· 32 17 65 22 3 4 9 8 12 201 113 54 88 145 119 76 127 43 96 52 73 62 89 r (49,117,…,25) Original image (11,220,…,39) (72,68,…,113) Codebook Index table 15

Self-reference watermarking scheme (3/3)   Restoration embedding layer : wet pixel i 83 87 93 96 86 95 99 84 94 LSB2 r Original image 1 16 ··· 32 17 4 9 001010011 001010111 001011101 001100000 001010110 001011111 001100011 001010100 001011110 Restoration bits: IDX = 00000001 16

Secret Key LSB2 IDX : wet pixel wet paper coding = = ≠ SK·LSB2 = IDX     wet paper coding SK·LSB2 = IDX     = SK·LSB2 = ≠ 001010001 001010101 001011101 001100000 001010100 001100011 001100010 001011110 001011111 001010011 001010111 001011101 001100000 001010110 001011111 001100011 001010100 001011110 81 85 93 96 84 99 98 94 95 83 87 93 96 86 95 99 84 94 17

Verification and restoration (1/2) Verification layer i Verified authentication code : AUT = HASH(1100101011001110) = 159 160 155 158 24 150 27 153 26 154 20 22 15 19   Tampered block Original image 10011111 10100000 10011011 10011110 00011000 10010110 00011011 10011001 00011010 10011010 00010100 00010110 00001111 00010011 18

Non-tampered blcok Tampered block Secret Key LSB1 AC   Non-tampered blcok       SK·LSB1 = AC = = ≠ SK·LSB1 Tampered block SK·LSB1 ≠ AC 159 160 155 158 24 150 27 153 26 154 20 22 15 19 10011111 10100000 10011011 10011110 00011000 10010110 00011011 10011001 00011010 10011010 00010100 00010110 00001111 00010011 19

Verification and restoration (2/2)   Reconstruction layer i 81 85 93 96 84 99 98 94 95 LSB2 r Original image 001010001 001010101 001011101 001100000 001010100 001100011 001100010 001011110 001011111 20

Convert to decimal number: 1 2 3 127 255 … (120,155,…,80) (100,125,…,150) Convert to decimal number: 1 (217,135,…,120)   (49,117,…,25) (11,220,…,39)     = SK·LSB2 = (72,68,…,113) Codebook Repair ○ ✔ Secret Key LSB2 IDX 21 Original image

Experimental Results 22

Tampering attack and the detection results (1/3) For smooth image Airplane (a) Airplane, PSNR=47.17 dB (b) Noised image from (a) (c) Detected result from (a) 23

Tampering attack and the detection results (2/3) For smooth image Lena (a) Lena, PSNR=47.19 dB (b) Manipulated image from (a) (c) Detected result from (a) 24

Tampering attack and the detection results (3/3) For smooth image Pepper (a) Pepper, PSNR=47.16 dB (b) Manipulated image from (a) (c) Detected result from (a) 25

Detection and restoration (1/3) For smooth image Airplane (a) Enlarged watermarked image Airplane, PSNR=47.17 dB (b) Manipulated image with cropping, PSNR=28.64 dB 26 (c) Detection result (marked with black dots) (d) Restoration result, PSNR=41.35 dB

Detection and restoration (2/3) For smooth image Lena (a) Enlarged watermarked image Lena, PSNR=47.19 dB (b) Manipulated image with cropping, PSNR=25.78 dB 27 (c) Detection result (marked with black dots) (d) Restoration result, PSNR=44.89 dB

Detection and restoration (3/3) For smooth image Pepper (a) Enlarged watermarked image Lena, PSNR=47.16 dB (b) Manipulated image with cropping, PSNR=22.46 dB 28 (c) Detection result (marked with black dots) (d) Restoration result, PSNR=41.96 dB

Conclusions Propose a self-reference watermarking approach Utilize VQ to achieve the reconstruction data with high compression rate Using wet-paper coding to improve the security Detect and locate the tampered regions sensitively Reconstruct the invalid regions with satisfactory quality Protect the integrity of image content