S.I. Paterson, A.K. Amin, A.C. Hall  Osteoarthritis and Cartilage 

Slides:



Advertisements
Similar presentations
Y. Tochigi, P. Zhang, M. J. Rudert, T. E. Baer, J. A. Martin, S. L
Advertisements

B. Bai, Y. Li  Osteoarthritis and Cartilage 
Moderate dynamic compression inhibits pro-catabolic response of cartilage to mechanical injury, tumor necrosis factor-α and interleukin-6, but accentuates.
C.P. Neu, T. Novak, K.F. Gilliland, P. Marshall, S. Calve 
Expression of superficial zone protein in mandibular condyle cartilage
Combination of ADMSCs and chondrocytes reduces hypertrophy and improves the functional properties of osteoarthritic cartilage  M.R. Ahmed, A. Mehmood,
IFT88 influences chondrocyte actin organization and biomechanics
D.A. Houston, A.K. Amin, T.O. White, I.D.M. Smith, A.C. Hall 
Micromechanical mapping of early osteoarthritic changes in the pericellular matrix of human articular cartilage  R.E. Wilusz, S. Zauscher, F. Guilak 
M. Z. Ilic, Ph. D. , B. Martinac, Ph. D. , T. Samiric, Ph. D. , C. J
Differential proteome analysis of normal and osteoarthritic chondrocytes reveals distortion of vimentin network in osteoarthritis  S. Lambrecht, M.Pharm.,
Analysis of radial variations in material properties and matrix composition of chondrocyte-seeded agarose hydrogel constructs  T.-A.N. Kelly, Ph.D., K.W.
A. Williams, Y. Qian, D. Bear, C.R. Chu  Osteoarthritis and Cartilage 
B. Mohanraj, G.R. Meloni, R.L. Mauck, G.R. Dodge 
The role of the PCM in reducing oxidative stress induced by radical initiated photoencapsulation of chondrocytes in poly(ethylene glycol) hydrogels  N.
W. Wang, S. Wei, M. Luo, B. Yu, J. Cao, Z. Yang, Z. Wang, M. B
Increased stromelysin-1 (MMP-3), proteoglycan degradation (3B3- and 7D4) and collagen damage in cyclically load-injured articular cartilage  Peggy M.
Cell deformation behavior in mechanically loaded rabbit articular cartilage 4 weeks after anterior cruciate ligament transection  S.M. Turunen, S.-K.
Clinical outcome of autologous chondrocyte implantation is correlated with infrared spectroscopic imaging-derived parameters  A. Hanifi, J.B. Richardson,
L.N. Nwosu, P.I. Mapp, V. Chapman, D.A. Walsh 
Activation of a chondrocyte volume-sensitive Cl− conductance prior to macroscopic cartilage lesion formation in the rabbit knee anterior cruciate ligament.
K. Murata, N. Kanemura, T. Kokubun, T. Fujino, Y. Morishita, K
A.J. McGregor, B.G. Amsden, S.D. Waldman  Osteoarthritis and Cartilage 
The volume and morphology of chondrocytes within non-degenerate and degenerate human articular cartilage  P.G Bush, Ph.D., A.C Hall, Ph.D.  Osteoarthritis.
Proteoglycan synthesis in bovine articular cartilage explants exposed to different low- frequency low-energy pulsed electromagnetic fields  M. De Mattei,
J.G Costouros, M.D., A.C Dang, H.T Kim, M.D., Ph.D. 
Injury of primary afferent neurons may contribute to osteoarthritis induced pain: an experimental study using the collagenase model in rats  S. Adães,
Blockade of nociceptive sensory afferent activity of the rat knee joint by the bradykinin B2 receptor antagonist fasitibant  A. Gomis, S. Meini, A. Miralles,
The use of hyperosmotic saline for chondroprotection: implications for orthopaedic surgery and cartilage repair  N.M. Eltawil, S.E.M. Howie, A.H.R.W.
Characterization of mature vs aged rabbit articular cartilage: analysis of cell density, apoptosis-related gene expression and mechanisms controlling.
Oxidative stress induces expression of osteoarthritis markers procollagen IIA and 3B3(−) in adult bovine articular cartilage  I.M. Khan, Ph.D., S.J. Gilbert,
The anti-NGF antibody muMab 911 both prevents and reverses pain behaviour and subchondral osteoclast numbers in a rat model of osteoarthritis pain  L.
Viability and volume of in situ bovine articular chondrocytes—changes following a single impact and effects of medium osmolarity  Dr Peter G. Bush, Ph.D.,
Comparison of mechanical debridement and radiofrequency energy for chondroplasty in an in vivo equine model of partial thickness cartilage injury  R.B.
Inhibition of caspase-9 reduces chondrocyte apoptosis and proteoglycan loss following mechanical trauma  C.A.M. Huser, M.Sc., M. Peacock, M.E. Davies,
Effects of insulin-like growth factor-1 and dexamethasone on cytokine-challenged cartilage: relevance to post-traumatic osteoarthritis  Y. Li, Y. Wang,
Y. Tochigi, P. Zhang, M. J. Rudert, T. E. Baer, J. A. Martin, S. L
M. A. McNulty, R. F. Loeser, C. Davey, M. F. Callahan, C. M
PCB126 induces apoptosis of chondrocytes via ROS-dependent pathways
Repair of osteochondral defects with recombinant human type II collagen gel and autologous chondrocytes in rabbit  H.J. Pulkkinen, V. Tiitu, P. Valonen,
Primary cilia disassembly down-regulates mechanosensitive hedgehog signalling: a feedback mechanism controlling ADAMTS-5 expression in chondrocytes  C.L.
A.C. Dang, M.D., A.P. Warren, M.D., H.T. Kim, M.D., Ph.D. 
Synergistic effects of growth and differentiation factor-5 (GDF-5) and insulin on expanded chondrocytes in a 3-D environment  B. Appel, J. Baumer, D.
Rapid in situ chondrocyte death induced by Staphylococcus aureus toxins in a bovine cartilage explant model of septic arthritis  I.D.M. Smith, J.P. Winstanley,
Nonlinear optical microscopy of articular cartilage
K. D. Novakofski, R. M. Williams, L. A. Fortier, H. O. Mohammed, W. R
L. C. Davies, B. Sc. , Ph. D. , E. J. Blain, B. Sc. , Ph. D. , B
D.R. Rich, A.L. Clark  Osteoarthritis and Cartilage 
Pharmaceutical nanocarrier association with chondrocytes and cartilage explants: influence of surface modification and extracellular matrix depletion 
J. Desrochers, M.W. Amrein, J.R. Matyas  Osteoarthritis and Cartilage 
The rate of hypo-osmotic challenge influences regulatory volume decrease (RVD) and mechanical properties of articular chondrocytes  Z. Wang, J. Irianto,
V. Morel, Ph.D., A. Merçay, M.Sc., T.M. Quinn, Ph.D. 
R. A. Damion, S. S. Pawaskar, M. E. Ries, E. Ingham, S. Williams, Z
Characterizing osteochondrosis in the dog: potential roles for matrix metalloproteinases and mechanical load in pathogenesis and disease progression 
J. A. Martin, A. Martini, A. Molinari, W. Morgan, W. Ramalingam, J. A
Who should have a joint replacement? A plea for more ‘phronesis’
In vitro glycation of articular cartilage alters the biomechanical response of chondrocytes in a depth-dependent manner  J.M. Fick, M.R.J. Huttu, M.J.
Scaffold degradation elevates the collagen content and dynamic compressive modulus in engineered articular cartilage  K.W. Ng, Ph.D., L.E. Kugler, B.S.,
Comparison between chondroprotective effects of glucosamine, curcumin, and diacerein in IL-1β-stimulated C-28/I2 chondrocytes  S. Toegel, M.Pharm.S.,
W.C. Bae, Ph.D., B.L. Schumacher, B.S., R.L. Sah, M.D., Sc.D. 
V.K. Shekhawat, M.P. Laurent, C. Muehleman, M.A. Wimmer 
Effect of a glucosamine derivative on impact-induced chondrocyte apoptosis in vitro. A preliminary report  C.A.M. Huser, Ph.D., M.E. Davies, Ph.D.  Osteoarthritis.
Mechanical injury of bovine cartilage explants induces depth-dependent, transient changes in MAP kinase activity associated with apoptosis  D.H. Rosenzweig,
Microfracture and bone morphogenetic protein 7 (BMP-7) synergistically stimulate articular cartilage repair  A.C. Kuo, M.D., Ph.D., J.J. Rodrigo, M.D.,
Cellular origin of neocartilage formed at wound edges of articular cartilage in a tissue culture experiment  P.K. Bos, M.D., Ph.D., N. Kops, B.Sc., J.A.N.
Estrogen reduces mechanical injury-related cell death and proteoglycan degradation in mature articular cartilage independent of the presence of the superficial.
Correlation between the MR T2 value at 4
B.D. Bomsta, M.S., L.C. Bridgewater, Ph.D., R.E. Seegmiller, Ph.D. 
Expression of superficial zone protein in mandibular condyle cartilage
Effects of physical stimulation with electromagnetic field and insulin growth factor-I treatment on proteoglycan synthesis of bovine articular cartilage 
Presentation transcript:

Airflow accelerates bovine and human articular cartilage drying and chondrocyte death  S.I. Paterson, A.K. Amin, A.C. Hall  Osteoarthritis and Cartilage  Volume 23, Issue 2, Pages 257-265 (February 2015) DOI: 10.1016/j.joca.2014.10.004 Copyright © 2014 Osteoarthritis Research Society International Terms and Conditions

Fig. 1 Airflow resulted in prominent changes in the appearance of bovine articular cartilage and accelerated chondrocyte death. (A) Bovine joints were dried in airflow (0.18 m/s) (column 1), static air (column 2), or airflow (0.18 m/s) covered in saturated (0.9% sterile saline-saturated gauze (column 3). Photographs demonstrate the appearance of joints (1–3) prior to experimentation, (4–6) after 90 min of drying, and (7–9) at 210 min following drying and 120 min of rehydration in 0.9% saline. Panels 10–12 show axial CLSM projections labelled with CMFDA and PI, indicating living and dead superficial chondrocytes respectively (CMFDA stains the cytoplasm of living chondrocytes green and PI stains the nuclei of dead chondrocytes red) (Scale bar = 150 μm) [N = 18]. CLSM = confocal laser scanning microscopy; CMFDA = 5-chloromethylfluorescein diacetate; PI = propidium iodide. (B) The percentage of cell death (PCD) in bovine joints dried for 50 min in relation to airflow rate (m/s) and best-fit line as calculated by linear regression (r2 = 0.511, P < 0.001) [N = 20]. (C) Percentage cell death (PCD) values for the cartilage of bovine joints exposed to air for 90 min under the conditions outlined in (A). PCD was most advanced in the airflow group and was lowest in the covered group [N = 18]. Osteoarthritis and Cartilage 2015 23, 257-265DOI: (10.1016/j.joca.2014.10.004) Copyright © 2014 Osteoarthritis Research Society International Terms and Conditions

Fig. 2 Drying under airflow resulted in accelerated chondrocyte death in human articular cartilage. (A) PCD values for human osteochondral explants in the three treatment groups at 0, 20, 40, and 60 min of exposure. The airflow group exhibited the most cell death at 20, 40 and 60 min [3(80)]. (B) Representative axial CLSM projections of human articular cartilage (trimmed edge at the top of each panel; scale bar = 150 μm) showing advanced cell death in the group exposed to airflow (0.18 m/s) (column 1) relative to the static (column 2) and covered (column 3) groups at 0 min (panels 1–3), 20 min (panels 4–6), 40 min (panels 7–9) and 60 min (panels 10–12) [3(80)]. Osteoarthritis and Cartilage 2015 23, 257-265DOI: (10.1016/j.joca.2014.10.004) Copyright © 2014 Osteoarthritis Research Society International Terms and Conditions

Fig. 3 Drying under airflow accelerated water loss in osteochondral explants. The percentage of initial water content retained after 45 min air exposure in (A) bovine [6(25)] and (B) human [4(51)] osteochondral explants under various conditions. Water content was lowest in the airflow group in both bovine and human explants. Osteoarthritis and Cartilage 2015 23, 257-265DOI: (10.1016/j.joca.2014.10.004) Copyright © 2014 Osteoarthritis Research Society International Terms and Conditions

Fig. 4 Rehydration of dried cartilage prevented further chondrocyte death. There was no significant difference in PCD for bovine osteochondral explants dried for 30 min (‘Dry’), dried for 30 min and rehydrated for 60 min (‘R60’), and dried for 30 min and rehydrated for 120 min (‘R120’). During drying the airflow was 0.18 m/s [6(18)]. Osteoarthritis and Cartilage 2015 23, 257-265DOI: (10.1016/j.joca.2014.10.004) Copyright © 2014 Osteoarthritis Research Society International Terms and Conditions

Fig. 5 PCD in drying osteochondral explants was more advanced at the cut edge. Representative axial CLSM projections of bovine osteochondral explants dried in static air at (A) 0 min, (B) 25 min, and (C) 45 min and labelled with CMFDA and PI. In panels A–C, the top broken white line identifies the cut edge. PCD was quantified from the cut edge to a distance of 200 μm (ROI1) and between the lines 400–600 μm (ROI2) from the cut edge (bar = 200 μm). (D) PCD values for bovine osteochondral explants dried for 30 min in airflow (0.18 m/s) as a function of the distance from the cut edge of the explant [6(18)]. (E) PCD in human osteochondral explants dried for up to 60 min in static air as a function of the distance from the cut edge [3(35)]. (F) PCD in human osteochondral explants dried for up to 60 min in airflow (0.18 m/s) as a function of the distance from the cut edge [3(36)]. In panel (F) the results of a two-way ANOVA showing the effect of distance from the cut edge are presented with black asterisks and results of post-hoc tests are presented with grey asterisks. Osteoarthritis and Cartilage 2015 23, 257-265DOI: (10.1016/j.joca.2014.10.004) Copyright © 2014 Osteoarthritis Research Society International Terms and Conditions