Work, Energy & Power AP Physics B.

Slides:



Advertisements
Similar presentations
Ch 8 Energy Notes ENERGY.
Advertisements

Work, Energy, and Power AP Physics C.
Work, Energy & Power Honors Physics. There are many different TYPES of Energy. Energy is expressed in JOULES (J) 4.19 J = 1 calorie Energy can be expressed.
Honors Physics. By his power God raised the Lord from the dead, and he will raise us also. 1 Corinthians 6:14.
Work, Energy, And Power m Honors Physics Lecture Notes.
Work and Energy Chapter 7.
1 Chapter Five Work, Energy, and Power. 2 Definitions in physics do not always match the usage of the words. We consider mechanical work, energy, and.
1a. Positive and negative work
Work, Energy & Power AP Physics B. There are many different TYPES of Energy. Energy is expressed in JOULES (J) 4.19 J = 1 calorie Energy can be expressed.
AP Physics 1 – Unit 5 WORK, POWER, AND ENERGY. Learning Objectives: BIG IDEA 3: The interactions of an object with other objects can be described by forces.
Work, Energy and Power AP style
Work, Energy, Power, and Machines. Energy Energy: the currency of the universe. Just like money, it comes in many forms! Everything that is accomplished.
Work, Energy & Power AP Physics B. There are many different TYPES of Energy. Energy is expressed in JOULES (J) 4.19 J = 1 calorie Energy can be expressed.
Introduction to Work Monday, September 14, 2015 Work Work tells us how much a force or combination of forces changes the energy of a system. Work is.
The Work Energy Theorem Up to this point we have learned Kinematics and Newton's Laws. Let 's see what happens when we apply BOTH to our new formula for.
Work, Energy & Power AP Physics 1. There are many different TYPES of Energy. Energy is expressed in JOULES (J) Energy can be expressed more specifically.
Mechanics Work and Energy Chapter 6 Work  What is “work”?  Work is done when a force moves an object some distance  The force (or a component of the.
Energy m m Physics 2053 Lecture Notes Energy.
Physics 3.3. Work WWWWork is defined as Force in the direction of motion x the distance moved. WWWWork is also defined as the change in total.
Work and Energy. Work a force that causes a displacement of an object does work on the object W = Fdnewtons times meters (N·m) or joules (J)
Work and Energy Chapter 7 Conservation of Energy Energy is a quantity that can be converted from one form to another but cannot be created or destroyed.
© 2010 Pearson Education, Inc. Lecture Outline Chapter 5 College Physics, 7 th Edition Wilson / Buffa / Lou.
Work and Energy Level 1 Physics. OBJECTIVES AND ESSENTIAL QUESTIONS OBJECTIVES Define and apply the concepts of work done by a constant force, potential.
Work and Energy.
Fall Semester Review: Physics Situation 1: Air resistance is ignored. A person is standing on a bridge that is 150 m above a river. a. If a stone with.
Work has a specific definition in physics
Lecture 10: Work & Energy.
WORK A force that causes a displacement of an object does work on the object. W = F d Work is done –if the object the work is done on moves due to the.
Work, Energy & Power AP Physics 1. There are many different TYPES of Energy. Energy is expressed in JOULES (J) 4.19 J = 1 calorie Energy can be expressed.
Work, Energy & Power. There are many different TYPES of Energy. Energy is expressed in JOULES (J) Energy is defined as the ability to do work. Work is.
WORK, ENERGY & POWER AP Physics 1. There are many different TYPES of Energy. Energy is expressed in JOULES (J) 4.19 J = 1 calorie Energy can be expressed.
Work, Energy & Power AP Physics B. There are many different TYPES of Energy. Energy is expressed in JOULES (J) 4.19 J = 1 calorie Energy can be expressed.
A body experiences a change in energy when one or more forces do work on it. A body must move under the influence of a force or forces to say work was.
Pre-AP Physics.  Energy is expressed in JOULES (J)  4.19 J = 1 calorie  Energy can be expressed more specifically by using the term WORK(W) Work =
Work, Energy & Power AP Physics B. There are many different TYPES of Energy. Energy is expressed in JOULES (J) 4.19 J = 1 calorie Energy can be expressed.
Ch.5 Energy Energy comes in various forms:. When you apply a Force to an object and it moves a displacement (x), then you get done. i.e.(Weight is now.
Energy Notes Energy is one of the most important concepts in science. An object has energy if it can produce a change in itself or in its surroundings.
Potential Energy (PE or U) Definition: The energy that an object has by virtue of its position relative to the surface of the earth. PE = mgh Compare the.
Work, Energy & Power PreAP Physics. There are many different TYPES of Energy. Energy is expressed in JOULES (J) 4.19 J = 1 calorie Energy can be expressed.
Work, Energy & Power Honors Physics. There are many different TYPES of Energy. Energy is expressed in JOULES (J) 4.19 J = 1 calorie Energy can be expressed.
Work, Energy & Power AP Physics 1.
Chapter 5 Work and Energy.
Work, Energy & Power AP Physics 1.
Work, Energy & Power AP Physics 1.
1a. Positive and negative work
Chapter 7 Work and Energy
Unit 6 Notes Work, Enery, & Power.
General Physics 101 PHYS Dr. Zyad Ahmed Tawfik
WORK And Energy and Power.
Work, Energy & Power AP Physics.
Chapter 5 Work and Energy
General Physics 101 PHYS Dr. Zyad Ahmed Tawfik
Work, Energy, and Power AP Physics C.
Today: Work, Kinetic Energy, Potential Energy
Today: Work, Kinetic Energy, Potential Energy
Work, Energy & Power AP Physics B.
Work AP Physics C.
Work.
Work, Energy & Power AP Physics 1.
Work, Energy, and Power AP Physics C.
Two disks Two disks are initially at rest. The mass of disk B is two times larger than that of disk A. The two disks then experience equal net forces F.
AP Physics C Work, Energy, and Power.
Work, Energy & Power Honors Physics.
Work, Energy, and Power AP Physics C.
Work & Energy.
Work, Energy & Power AP Physics B.
Work, Energy, and Power AP Physics.
Work, Energy & Power Physics.
Work & Power MYP / Honors Physics.
Work, Energy & Power AP Physics B.
Presentation transcript:

Work, Energy & Power AP Physics B

There are many different TYPES of Energy. Energy is expressed in JOULES (J) 4.19 J = 1 calorie Energy can be expressed more specifically by using the term WORK(W) Work = The Scalar Dot Product between Force and Displacement. So that means if you apply a force on an object and it covers a displacement you have supplied ENERGY or done WORK on that object.

Scalar Dot Product? A product is obviously a result of multiplying 2 numbers. A scalar is a quantity with NO DIRECTION. So basically Work is found by multiplying the Force times the displacement and result is ENERGY, which has no direction associated with it. A dot product is basically a CONSTRAINT on the formula. In this case it means that F and x MUST be parallel. To ensure that they are parallel we add the cosine on the end. W = Fx Area = Base x Height

Work The VERTICAL component of the force DOES NOT cause the block to move the right. The energy imparted to the box is evident by its motion to the right. Therefore ONLY the HORIZONTAL COMPONENT of the force actually creates energy or WORK. When the FORCE and DISPLACEMENT are in the SAME DIRECTION you get a POSITIVE WORK VALUE. The ANGLE between the force and displacement is ZERO degrees. What happens when you put this in for the COSINE? When the FORCE and DISPLACEMENT are in the OPPOSITE direction, yet still on the same axis, you get a NEGATIVE WORK VALUE. This negative doesn't mean the direction!!!! IT simply means that the force and displacement oppose each other. The ANGLE between the force and displacement in this case is 180 degrees. What happens when you put this in for the COSINE? When the FORCE and DISPLACEMENT are PERPENDICULAR, you get NO WORK!!! The ANGLE between the force and displacement in this case is 90 degrees. What happens when you put this in for the COSINE?

The Work Energy Theorem Up to this point we have learned Kinematics and Newton's Laws. Let 's see what happens when we apply BOTH to our new formula for WORK! We will start by applying Newton's second law! Using Kinematic #3! An interesting term appears called KINETIC ENERGY or the ENERGY OF MOTION!

The Work Energy Theorem And so what we really have is called the WORK-ENERGY THEOREM. It basically means that if we impart work to an object it will undergo a CHANGE in speed and thus a change in KINETIC ENERGY. Since both WORK and KINETIC ENERGY are expressed in JOULES, they are EQUIVALENT TERMS! " The net WORK done on an object is equal to the change in kinetic energy of the object."

Example W=Fxcosq A 70 kg base-runner begins to slide into second base when moving at a speed of 4.0 m/s. The coefficient of kinetic friction between his clothes and the earth is 0.70. He slides so that his speed is zero just as he reaches the base (a) How much energy is lost due to friction acting on the runner? (b) How far does he slide?

Example A 5.00 g bullet moving at 600 m/s penetrates a tree trunk to a depth of 4.00 cm. (a) Use the work-energy theorem, to determine the average frictional force that stops the bullet. (b) Assuming that the frictional force is constant, determine how much time elapses between the moment the bullet enters the tree and the moment it stops moving

Lifting mass at a constant speed Suppose you lift a mass upward at a constant speed, Dv = 0 & DK=0. What does the work equal now? Since you are lifting at a constant speed, your APPLIED FORCE equals the WEIGHT of the object you are lifting. Since you are lifting you are raising the object a certain “y” displacement or height above the ground. When you lift an object above the ground it is said to have POTENTIAL ENERGY

Suppose you throw a ball upward What does work while it is flying through the air? Is the CHANGE in kinetic energy POSITIVE or NEGATIVE? Is the CHANGE in potential energy POSITIVE or NEGATIVE?

ENERGY IS CONSERVED The law of conservation of mechanical energy states: Energy cannot be created or destroyed, only transformed! Energy Initial Energy Final

Energy consistently changes forms

Energy consistently changes forms Am I above the ground? Am I moving? Position m v U K ME 1 (= U+K)

Energy consistently changes forms Energy Initial = Energy Final Position m v U K ME 1 60 kg 8 m/s 0 J 1920 J 2

Energy consistently changes forms Am I moving at the top? No, v = 0 m/s Ei = Ef Position m v U K ME 1 60 kg 8 m/s 0 J 1920 J 2 6.66 m/s 588 J 1332 J 3

Example A 2.0 m pendulum is released from rest when the support string is at an angle of 25 degrees with the vertical. What is the speed of the bob at the bottom of the string? q Lcosq L h EB = EA

Power One useful application of Energy is to determine the RATE at which we store or use it. We call this application POWER! As we use this new application, we have to keep in mind all the different kinds of substitutions we can make. Unit = WATT or Horsepower

Example What is the average power needed to accelerate a 950-kg car from 0 to 65 mi/h in 6.0 seconds? Assume that all forms of frictional losses can be ignored.

Example A kayaker paddles with a power output of 50.0 W to maintain a steady speed of 1.50 m/s. (a) Calculate the resistive force exerted by the water on the kayak. (b) If the kayaker doubles her power output, and the resistive force due to the water remains the same, by what factor does the kayaker’s speed change?