Laurenz Muessig, Jonas Hauser, Thomas Joseph Wills, Francesca Cacucci 

Slides:



Advertisements
Similar presentations
Dmitriy Aronov, David W. Tank  Neuron 
Advertisements

Heather L. Dean, Maureen A. Hagan, Bijan Pesaran  Neuron 
Jérôme Epsztein, Michael Brecht, Albert K. Lee  Neuron 
Signal, Noise, and Variation in Neural and Sensory-Motor Latency
David Dupret, Joseph O’Neill, Jozsef Csicsvari  Neuron 
Joshua P. Bassett, Thomas J. Wills, Francesca Cacucci  Current Biology 
Volume 82, Issue 1, Pages (April 2014)
Chenguang Zheng, Kevin Wood Bieri, Yi-Tse Hsiao, Laura Lee Colgin 
Habit Learning by Naive Macaques Is Marked by Response Sharpening of Striatal Neurons Representing the Cost and Outcome of Acquired Action Sequences 
Volume 92, Issue 5, Pages (December 2016)
Heather L. Dean, Maureen A. Hagan, Bijan Pesaran  Neuron 
Mismatch Receptive Fields in Mouse Visual Cortex
Grid Cells Encode Local Positional Information
E.H. Baeg, Y.B. Kim, K. Huh, I. Mook-Jung, H.T. Kim, M.W. Jung  Neuron 
H. Freyja Ólafsdóttir, Francis Carpenter, Caswell Barry  Neuron 
Developmental Inhibition of Gsk3 Rescues Behavioral and Neurophysiological Deficits in a Mouse Model of Schizophrenia Predisposition  Makoto Tamura, Jun.
Vincent B. McGinty, Antonio Rangel, William T. Newsome  Neuron 
Kiah Hardcastle, Surya Ganguli, Lisa M. Giocomo  Neuron 
Cascaded Effects of Spatial Adaptation in the Early Visual System
CA3 Retrieves Coherent Representations from Degraded Input: Direct Evidence for CA3 Pattern Completion and Dentate Gyrus Pattern Separation  Joshua P.
Cortical Mechanisms of Smooth Eye Movements Revealed by Dynamic Covariations of Neural and Behavioral Responses  David Schoppik, Katherine I. Nagel, Stephen.
Human Cortical Neurons in the Anterior Temporal Lobe Reinstate Spiking Activity during Verbal Memory Retrieval  Anthony I. Jang, John H. Wittig, Sara.
Gamma and the Coordination of Spiking Activity in Early Visual Cortex
Inversely Active Striatal Projection Neurons and Interneurons Selectively Delimit Useful Behavioral Sequences  Nuné Martiros, Alexandra A. Burgess, Ann.
Volume 72, Issue 4, Pages (November 2011)
New Experiences Enhance Coordinated Neural Activity in the Hippocampus
Annabelle C. Singer, Loren M. Frank  Neuron 
Volume 90, Issue 1, Pages (April 2016)
Hippocampal “Time Cells”: Time versus Path Integration
Huihui Zhou, Robert Desimone  Neuron 
Volume 78, Issue 5, Pages (June 2013)
Hippocampal Replay of Extended Experience
Volume 88, Issue 3, Pages (November 2015)
Liu D. Liu, Christopher C. Pack  Neuron 
Spatially Periodic Activation Patterns of Retrosplenial Cortex Encode Route Sub-spaces and Distance Traveled  Andrew S. Alexander, Douglas A. Nitz  Current.
Guifen Chen, Daniel Manson, Francesca Cacucci, Thomas Joseph Wills 
Volume 88, Issue 3, Pages (November 2015)
Representation of Geometric Borders in the Developing Rat
Volume 87, Issue 2, Pages (July 2015)
Kevin Wood Bieri, Katelyn N. Bobbitt, Laura Lee Colgin  Neuron 
Volume 89, Issue 6, Pages (March 2016)
Grid Cells Encode Local Positional Information
Greg Schwartz, Sam Taylor, Clark Fisher, Rob Harris, Michael J. Berry 
Serial, Covert Shifts of Attention during Visual Search Are Reflected by the Frontal Eye Fields and Correlated with Population Oscillations  Timothy J.
Guilhem Ibos, David J. Freedman  Neuron 
Receptive-Field Modification in Rat Visual Cortex Induced by Paired Visual Stimulation and Single-Cell Spiking  C. Daniel Meliza, Yang Dan  Neuron  Volume.
Volume 77, Issue 6, Pages (March 2013)
Xiaomo Chen, Marc Zirnsak, Tirin Moore  Cell Reports 
Grid and Nongrid Cells in Medial Entorhinal Cortex Represent Spatial Location and Environmental Features with Complementary Coding Schemes  Geoffrey W.
Timing, Timing, Timing: Fast Decoding of Object Information from Intracranial Field Potentials in Human Visual Cortex  Hesheng Liu, Yigal Agam, Joseph.
Monica W. Chu, Wankun L. Li, Takaki Komiyama  Neuron 
Distinct Translaminar Glutamatergic Circuits to GABAergic Interneurons in the Neonatal Auditory Cortex  Rongkang Deng, Joseph P.Y. Kao, Patrick O. Kanold 
Marlene R. Cohen, John H.R. Maunsell  Neuron 
Volume 22, Issue 12, Pages (March 2018)
New and Distinct Hippocampal Place Codes Are Generated in a New Environment during Septal Inactivation  Mark P. Brandon, Julie Koenig, Jill K. Leutgeb,
Multiple Running Speed Signals in Medial Entorhinal Cortex
Traces of Experience in the Lateral Entorhinal Cortex
Encoding of Stimulus Probability in Macaque Inferior Temporal Cortex
Volume 27, Issue 17, Pages e2 (September 2017)
Transient Slow Gamma Synchrony Underlies Hippocampal Memory Replay
Grid Cells Form a Global Representation of Connected Environments
Bilal Haider, David P.A. Schulz, Michael Häusser, Matteo Carandini 
Volume 22, Issue 12, Pages (March 2018)
Kristy A. Sundberg, Jude F. Mitchell, John H. Reynolds  Neuron 
Volume 24, Issue 10, Pages (September 2018)
Population Responses to Contour Integration: Early Encoding of Discrete Elements and Late Perceptual Grouping  Ariel Gilad, Elhanan Meirovithz, Hamutal.
Volume 29, Issue 5, Pages e4 (March 2019)
Supratim Ray, John H.R. Maunsell  Neuron 
Surround Integration Organizes a Spatial Map during Active Sensation
Matthew R. Roesch, Adam R. Taylor, Geoffrey Schoenbaum  Neuron 
Presentation transcript:

A Developmental Switch in Place Cell Accuracy Coincides with Grid Cell Maturation  Laurenz Muessig, Jonas Hauser, Thomas Joseph Wills, Francesca Cacucci  Neuron  Volume 86, Issue 5, Pages 1167-1173 (June 2015) DOI: 10.1016/j.neuron.2015.05.011 Copyright © 2015 The Authors Terms and Conditions

Figure 1 Place Cell Firing Is More Concentrated Close to Environment Boundaries in Pre-weanling (P14–P21) than in Post-weanling (P22–P30) and Adult Rats (A) Quadrant mean map construction. The full map is divided into quadrants rotated around the center of the environment (c) such that all walls a are mapped onto a’ and all walls b are mapped onto b’. (B) False-color quadrant mean maps of the distribution of peak firing rate locations (expressed as percent of all peaks). (C) Proportion of place cell peaks in “edge” (“Ed”, bottom part of each bar) versus “center” (Cn, top part of each bar) zones of the environment. The black dashed line indicates the expected proportion for an even distribution of peaks across the environment. Ad, adult. (D) Quadrant mean rate maps of the overall, unsmoothed firing rate (in Hz) for all recorded place cells in each age group. (E) Mean place cell firing rate (± SEM) in edge versus center zones of the environment. ∗p < 0.01 level. Neuron 2015 86, 1167-1173DOI: (10.1016/j.neuron.2015.05.011) Copyright © 2015 The Authors Terms and Conditions

Figure 2 Place Fields Are More Stable Close to Environmental Walls in Pre-weanling Pups (A) Mean within-trial stability (± SEM) of place cells with peak firing locations in the edge and center zones of the environment. (B) False-color firing rate maps from representative example place cells showing within-trial stability at P16, P22, and adult. Within each age group, the maps show, from left to right, the whole recording session, the first half of the session, and the second half of the session for place fields with firing peaks located close (top) or far (bottom) from a wall (stability values for examples lie within SD of the mean of the respective population). (C) Scatterplots of within-trial stability versus distance from the peak to the nearest wall with linear regression lines of best fit. Solid black lines are significant at the p < 0.05 level, and r2 and p for regression are shown above the plots. (D) Mean across-trial stability (± SEM) of place fields with peak firing locations in the edge and center zones. (E) Firing rate maps showing example across-trial stability at P16, P22, and adult. Within age groups, the left and right columns show two recording sessions separated by 15 min. (F) Scatterplots of across-trial stability versus distance to wall with lines of best fit. Solid black lines are significant at the p < 0.05 level, and r2 and p for regression are shown above the plots. Neuron 2015 86, 1167-1173DOI: (10.1016/j.neuron.2015.05.011) Copyright © 2015 The Authors Terms and Conditions

Figure 3 In Pre-weanling Pups, the Accuracy of Position Decoding Is Higher near Environment Boundaries (A) Median reconstruction error per ensemble for each age group (mean ± SEM). ∗p < 0.01 level. (B) Distribution of errors for all 1-s reconstruction time windows in each age group. Colored lines show error distributions for real data, and gray lines show errors from spatially shuffled data (Experimental Procedures). (C) Quadrant mean false-color heat map of reconstruction accuracy (1 / (error + 1)) for each age group. (D) Mean accuracy (± SEM) in “edge” and “center” zones of the environment. The black dashed line indicates the mean expected accuracy from decoding spatially shuffled data (Experimental Procedures). ∗p < 0.01 level. Neuron 2015 86, 1167-1173DOI: (10.1016/j.neuron.2015.05.011) Copyright © 2015 The Authors Terms and Conditions