Volume 31, Issue 1, Pages (October 2014)

Slides:



Advertisements
Similar presentations
Harinath Doodhi, Eugene A. Katrukha, Lukas C. Kapitein, Anna Akhmanova 
Advertisements

Volume 22, Issue 5, Pages (May 2012)
Volume 27, Issue 1, Pages (October 2013)
Harinath Doodhi, Eugene A. Katrukha, Lukas C. Kapitein, Anna Akhmanova 
Dual Modes of Cdc42 Recycling Fine-Tune Polarized Morphogenesis
Yalei Chen, Melissa M. Rolls, William O. Hancock  Current Biology 
Drosophila Katanin-60 Depolymerizes and Severs at Microtubule Defects
Volume 43, Issue 1, Pages e6 (October 2017)
Volume 43, Issue 5, Pages (September 2011)
Volume 17, Issue 2, Pages (August 2009)
Volume 30, Issue 6, Pages (September 2014)
Volume 22, Issue 6, Pages (June 2012)
Rishita Changede, Xiaochun Xu, Felix Margadant, Michael P. Sheetz 
And the Dead Shall Rise: Actin and Myosin Return to the Spindle
Volume 128, Issue 2, Pages (January 2007)
Building the Neuronal Microtubule Cytoskeleton
Volume 27, Issue 18, Pages e6 (September 2017)
Volume 27, Issue 2, Pages (October 2013)
Linda Balabanian, Christopher L. Berger, Adam G. Hendricks 
Volume 36, Issue 2, Pages (January 2016)
Volume 14, Issue 2, Pages (January 2016)
Jennifer L. Ross, Henry Shuman, Erika L.F. Holzbaur, Yale E. Goldman 
Volume 147, Issue 5, Pages (November 2011)
Yuan Lin, David S.W. Protter, Michael K. Rosen, Roy Parker 
Zhang-Yi Liang, Mark Andrew Hallen, Sharyn Anne Endow  Current Biology 
Mapping Load-Bearing in the Mammalian Spindle Reveals Local Kinetochore Fiber Anchorage that Provides Mechanical Isolation and Redundancy  Mary Williard.
Volume 18, Issue 20, Pages (October 2008)
Ahmet Yildiz, Michio Tomishige, Arne Gennerich, Ronald D. Vale  Cell 
Qiaochu Li, Stephen J. King, Ajay Gopinathan, Jing Xu 
She1-Mediated Inhibition of Dynein Motility along Astral Microtubules Promotes Polarized Spindle Movements  Steven M. Markus, Katelyn A. Kalutkiewicz,
Volume 44, Issue 2, Pages e4 (January 2018)
Susanne Bechstedt, Gary J. Brouhard  Developmental Cell 
Mechanisms of Centrosome Separation and Bipolar Spindle Assembly
Measuring Pushing and Braking Forces Generated by Ensembles of Kinesin-5 Crosslinking Two Microtubules  Yuta Shimamoto, Scott Forth, Tarun M. Kapoor 
RNA Controls PolyQ Protein Phase Transitions
Volume 15, Issue 4, Pages (October 2008)
Mitosis, Diffusible Crosslinkers, and the Ideal Gas Law
Stefano Di Talia, Eric F. Wieschaus  Developmental Cell 
Volume 55, Issue 1, Pages (July 2014)
Volume 135, Issue 5, Pages (November 2008)
KIF4 Regulates Midzone Length during Cytokinesis
Minus-End-Directed Motor Ncd Exhibits Processive Movement that Is Enhanced by Microtubule Bundling In Vitro  Ken'ya Furuta, Yoko Yano Toyoshima  Current.
Dynein Tethers and Stabilizes Dynamic Microtubule Plus Ends
Membrane Shape Modulates Transmembrane Protein Distribution
Volume 2, Issue 6, Pages (December 2012)
Volume 12, Issue 3, Pages (March 2007)
Volume 138, Issue 6, Pages (September 2009)
Kinesin-5: A Team Is Just the Sum of Its Parts
Radhika Subramanian, Tarun M. Kapoor  Developmental Cell 
Anaphase B Precedes Anaphase A in the Mouse Egg
A MAP for Bundling Microtubules
David Vanneste, Masatoshi Takagi, Naoko Imamoto, Isabelle Vernos 
Volume 23, Issue 14, Pages (July 2013)
The Distribution of Polar Ejection Forces Determines the Amplitude of Chromosome Directional Instability  Kevin Ke, Jun Cheng, Alan J. Hunt  Current Biology 
Volume 18, Issue 23, Pages (December 2008)
Minus-End-Directed Motor Ncd Exhibits Processive Movement that Is Enhanced by Microtubule Bundling In Vitro  Ken'ya Furuta, Yoko Yano Toyoshima  Current.
The Kinesin-8 Kif18A Dampens Microtubule Plus-End Dynamics
Susanne Bechstedt, Kevan Lu, Gary J. Brouhard  Current Biology 
Volume 27, Issue 23, Pages e6 (December 2017)
Anisotropic Diffusion of Macromolecules in the Contiguous Nucleocytoplasmic Fluid during Eukaryotic Cell Division  Nisha Pawar, Claudia Donth, Matthias.
Measuring Pushing and Braking Forces Generated by Ensembles of Kinesin-5 Crosslinking Two Microtubules  Yuta Shimamoto, Scott Forth, Tarun M. Kapoor 
Volume 15, Issue 15, Pages (August 2005)
Swapna Kollu, Samuel F. Bakhoum, Duane A. Compton  Current Biology 
Self-Organization of Minimal Anaphase Spindle Midzone Bundles
Volume 15, Issue 19, Pages (October 2005)
Joshua S. Weinger, Minhua Qiu, Ge Yang, Tarun M. Kapoor 
Volume 33, Issue 3, Pages (May 2015)
Volume 16, Issue 19, Pages (October 2006)
XMAP215 Is a Processive Microtubule Polymerase
Jennifer L. Ross, Henry Shuman, Erika L.F. Holzbaur, Yale E. Goldman 
Presentation transcript:

Volume 31, Issue 1, Pages 61-72 (October 2014) Minus-End-Directed Kinesin-14 Motors Align Antiparallel Microtubules to Control Metaphase Spindle Length  Austin J. Hepperla, Patrick T. Willey, Courtney E. Coombes, Breanna M. Schuster, Maryam Gerami-Nejad, Mark McClellan, Soumya Mukherjee, Janet Fox, Mark Winey, David J. Odde, Eileen O’Toole, Melissa K. Gardner  Developmental Cell  Volume 31, Issue 1, Pages 61-72 (October 2014) DOI: 10.1016/j.devcel.2014.07.023 Copyright © 2014 Elsevier Inc. Terms and Conditions

Figure 1 Kar3-Cik1 Molecular Motors Contribute to Proper Metaphase Spindle Length (A) Kar3 associates with either of two accessory proteins, Vik1 or Cik1, inside of cells. (B) TIRF microscopy experiments in live cells (scale bar, 1,000 nm). (C) Quantitative analyses of TIRF microscopy experiments (WT, n = 392; cik1Δ, n = 219; vik1Δ, n = 209; kar3Δ, n = 195; error bars show SEM). (D) TIRF microscopy experiments demonstrate wider spindles in cik1Δ and vik1Δ experiments (error bars show SEM). (E) Localization studies using fluorescence microscopy (scale bar, 500 nm). Developmental Cell 2014 31, 61-72DOI: (10.1016/j.devcel.2014.07.023) Copyright © 2014 Elsevier Inc. Terms and Conditions

Figure 2 Poor Interpolar Microtubule Alignment in cik1Δ Spindles Leads to Shorter Spindle Lengths (A) Electron tomography experiments in WT (1,128 nm) and cik1Δ (868 nm) spindles. (B) Core microtubule number in cik1Δ (n = 4) compared to WT spindles (n = 6). Reduced core microtubule number was associated with shorter cik1Δ spindles (right). (C) Spindle length is positively correlated with integrated Cin8-GFP fluorescence in WT spindles (pzero_slope << 0.0001, red). (D) Cin8-GFP localization and attachment appears disrupted in cik1Δ metaphase spindles (top: scale bar, 500 nm; bottom: p = 0.0008). (E) Schematic showing that the kinesin-5 molecular motor Cin8 is not able to properly crosslink unaligned midzone microtubules. Developmental Cell 2014 31, 61-72DOI: (10.1016/j.devcel.2014.07.023) Copyright © 2014 Elsevier Inc. Terms and Conditions

Figure 3 Computational Simulations Predict that Minus-End-Directed Crosslinking Motors Efficiently Align Midzone Microtubules while Plus-End-Directed Motors and Angular Diffusion Do Not (A) Models for molecular motor-based “zippering” of microtubules to form a mitotic spindle midzone. (B) Typical simulation starting conditions (top) and potential ending condition (bottom) (blue: microtubules; red: motors). (C and D) Simulations predict that minus-end-directed motors are more efficient at midzone microtubule alignment than are plus-end-directed motors (C) and passive angular diffusion (D; Movie S2). Green arrow indicates experimentally measured diffusion coefficient intercept (Kalinina et al., 2013) (Figure S3). Inset: alignment efficiency depends weakly on minus-end-directed motor tail length in the simulation. (E) Simulated minus-end motors promote proper midzone microtubule alignment because they tend to pivot splayed microtubules toward the spindle poles (left). In contrast, plus-end motors tend to pivot spindle microtubules away from the midzone (center), and passive angular diffusion has no positional bias and is thus less efficient at pivoting simulated microtubules into alignment along the spindle axis. Developmental Cell 2014 31, 61-72DOI: (10.1016/j.devcel.2014.07.023) Copyright © 2014 Elsevier Inc. Terms and Conditions

Figure 4 In Vitro Experiments Demonstrate that Full-Length Kar3-Cik1 Is a Processive Minus-End-Directed Molecular Motor that Crosslinks Microtubules (A) TIRF microscopy assays demonstrated that purified Kar3-GFP/Cik1-GST moves in a processive minus-end-directed manner along a microtubule (dim, minus end; bright, plus-end) (Movie S3). (B) All observations demonstrated minus-end-directed Kar3/Cik1 motility. (C) Negative-stained TEM images provide evidence for single-molecule microtubule binding events (yellow circles). The red and green arrows (right) are suggestive of Kar3-Cik1 motor-heads (inset scale bars, 25 nm). (D) In vitro Kar3-Cik1 motors (green) act to pivot and slide the cargo Alexa 647 microtubules (blue) relative to the coverslip-attached rhodamine microtubules (red) (Movies S4, S5, S6, and S7) (scale bar, 2 μm). (E) Kar3-Cik1 robustly crosslinks red and green microtubules in a bulk bundling experiment. Developmental Cell 2014 31, 61-72DOI: (10.1016/j.devcel.2014.07.023) Copyright © 2014 Elsevier Inc. Terms and Conditions

Figure 5 The Localization and Dynamics of Kar3/Cik1 Are Consistent with Simulation Predictions for Its Role in Midzone Microtubule Alignment (A) Simulations predict (blue) and experiments confirm (magenta) that Kar3-Cik1 is localized just outside of the midzone, near to the spindle poles (p = 0.79, K-S test) (scale bar, 1,000 nm). (B and C) Experimentally estimated motor numbers (B; see Supplemental Experimental Procedures) are consistent with (C) simulations that predict that ≥20 Kar3-Cik1 motors numbers could result in reasonable midzone microtubule alignment efficiency. (D and E) Experimental and simulated FRAP experiments. A reasonable fit between experiments and simulations is achieved using koff = 1 s−1 for Kar3-Cik1 motor interaction with microtubules (D), which is (E) an off-rate that simulations predict should produce efficient midzone microtubule alignment. (F) Simulations predict that minus-end-directed motility is critical for midzone microtubule alignment (inset shows results for increasing numbers of stationary motors). (G) Motility of spindle-associated Kar3-Cik1 motors (scale bar, 500 nm) in experiments (left) and simulations (right). (H) Consistent with simulation predictions, a kar3-1 motor rigor mutant shows wider spindle morphology, similar to cik1Δ spindles (WT, n = 392; kar3-1, n = 199; cik1Δ, n = 219; error bars show SEM). Developmental Cell 2014 31, 61-72DOI: (10.1016/j.devcel.2014.07.023) Copyright © 2014 Elsevier Inc. Terms and Conditions

Figure 6 Model for How Minus-End-Directed Kinesin-14 Motors Could Align Antiparallel Microtubules to Extend Metaphase Spindle Lengths In this model, as the Kar3-Cik1 minus-end-directed motor-head (blue circles) moves toward the spindle poles, the tail travels with the head (blue line), remaining attached to its crosslinked microtubule. This action results in “zippering” of the splayed microtubule (green) toward the spindle axis as the minus-end-directed motor-head walks toward the spindle pole to which its microtubule is attached. This action leads to a functional midzone, with spindle microtubules tightly aligned parallel to the spindle axis. Thus, minus-end-directed kinesin-14 molecular motors then allow for proper targeting and crosslinking of kinesin-5 molecular motors (magenta) in the spindle midzone, leading to an increase in outwardly directed spindle forces, and longer spindles. Developmental Cell 2014 31, 61-72DOI: (10.1016/j.devcel.2014.07.023) Copyright © 2014 Elsevier Inc. Terms and Conditions