Daniel A. Obenchain, Derek S. Frank, Stewart E. Novick,

Slides:



Advertisements
Similar presentations
High sensitivity CRDS of the a 1 ∆ g ←X 3 Σ − g band of oxygen near 1.27 μm: magnetic dipole and electric quadrupole transitions in different bands of.
Advertisements

FOURIER TRANSFORM MICROWAVE SPECTROSCOPY OF ALKALI METAL ACETYLIDES P. M. SHERIDAN, M. K. L. BINNS Department of Chemistry and Biochemistry, Canisius College.
Cristina PUZZARINI Dip. di Chimica “G. Ciamician”, Università di Bologna QUANTUM-CHEMICAL CALCULATIONS of SPECTROSCOPIC PARAMETERS for ROTATIONAL SPECTROSCOPY:
THE MICROWAVE SPECTRA OF THE LINEAR OC HCCCN, OC DCCCN, AND THE T-SHAPED HCCCN CO 2 COMPLEXES The 62 nd. International Symposium on Molecular Spectroscopy,
MONITORING REACTION PRODUCTS USING CHIRPED-PULSE FOURIER TRANSFORM MICROWAVE SPECTROSCOPY Derek S. Frank, Daniel A. Obenchain, Wei Lin, Stewart E. Novick,
THE MICROWAVE SPECTRUM, STRUCTURE, AND DOUBLE PROTON EXCHANGE OF FORMIC ACID – NITRIC ACID Becca Mackenzie Chris Dewberry, Ken Leopold Department of Chemistry,
Room-Temperature Chirped-Pulse Microwave Spectrum of 2-Methylfuran
Rotational Spectra of Methylene Cyclobutane and Argon-Methylene Cyclobutane Wei Lin, Jovan Gayle Wallace Pringle, Stewart E. Novick Department of Chemistry.
The inversion motion in the Ne – NH 3 van der Waals dimer studied via microwave spectroscopy Laura E. Downie, Julie M. Michaud and Wolfgang Jäger Department.
Observation of the weakly bound (HCl) 2 H 2 O cluster by chirped-pulse FTMW spectroscopy Zbigniew Kisiel, a Alberto Lesarri, b Justin Neill, c Matt Muckle,
DANIEL P. ZALESKI, JUSTIN L. NEILL, MATTHEW T. MUCKLE, AMANDA L. STEBER, NATHAN A. SEIFERT, AND BROOKS H. PATE Department of Chemistry, University of Virginia,
DANIEL P. ZALESKI, JUSTIN L. NEILL, AND BROOKS H. PATE Department of Chemistry, University of Virginia, McCormick Rd., P.O. Box , Charlottesville,
Microwave Spectrum of Hydrogen Bonded Hexafluoroisopropanol  water Complex Abhishek Shahi Prof. E. Arunan Group Department of Inorganic and Physical.
FOURIER TRANSFORM MICROWAVE SPECTROSCOPY OF ALKALI METAL HYDROSULFIDES: DETECTION OF KSH P. M. SHERIDAN, M. K. L. BINNS, J. P. YOUNG Department of Chemistry.
THE PURE ROTATIONAL SPECTRA OF THE TWO LOWEST ENERGY CONFORMERS OF n-BUTYL ETHYL ETHER. B. E. Long, G. S. Grubbs II, and S. A. Cooke RH13.
The effective Hamiltonian for the ground state of 207 Pb 19 F and the fine structure spectrum Trevor J. Sears Brookhaven National Laboratory and Stony.
Physique des Lasers, Atomes et Molécules
Rotational Spectra and Structure of Phenylacetylene-Water Complex and Phenylacetylene-H 2 S (preliminary) Mausumi Goswami, L. Narasimhan, S. T. Manju and.
SILYL FLUORIDE: LAMB-DIP SPECTRA and EQUILIBRIUM STRUCTURE Cristina PUZZARINI and Gabriele CAZZOLI Dipartimento di Chimica “G. Ciamician”, Università di.
Rotationally-Resolved Spectroscopy of the Bending Modes of Deuterated Water Dimer JACOB T. STEWART AND BENJAMIN J. MCCALL DEPARTMENT OF CHEMISTRY, UNIVERSITY.
Ab Initio and Experimental Studies of the E Internal Rotor State of He-CH 3 F Kelly J. Higgins, Zhenhong Yu, and William Klemperer, Department of Chemistry.
Rotational Spectra Of Cyclopropylmethyl Germane And Cyclopropylmethyl Silane: Dipole Moment And Barrier To Methyl Group Rotation Rebecca A. Peebles, Sean.
N 2 -CO 2 Consequences for Global Warming? Daniel Frohman Wesleyan University TH01 June 22, 2010.
Laboratory of Millimetre-wave Spectroscopy of Bologna The ROTATIONAL SPECTRUM of HDO : ACCURATE SPECTROSCOPIC and HYPERFINE PARAMETERS G. Cazzoli*, V.
Microwave Spectroscopy and Internal Dynamics of the Ne-NO 2 Van der Waals Complex Brian J. Howard, George Economides and Lee Dyer Department of Chemistry,
Helen O. Leung, Mark D. Marshall & Joseph P. Messenger Department of Chemistry Amherst College Supported by the National Science Foundation.
The Rotational Spectrum of the Water–Hydroperoxy Radical (H 2 O–HO 2 ) Complex Kohsuke Suma, Yoshihiro Sumiyoshi, and Yasuki Endo Department of Basic Science,
Rotational Spectra of N 2 O-H 2 Complexes University of Alberta Jen Nicole Landry and Wolfgang Jäger June 23, 2005.
THE PURE ROTATIONAL SPECTRUM OF PERFLUOROOCTANONITRILE, C 7 F 15 CN, STUDIED USING CAVITY- AND CHIRPED-PULSED FOURIER TRANSFORM MICROWAVE SPECTROSCOPIES.
Fourier-transform microwave spectroscopy of the CCCCl radical Takashi Yoshikawa, Yoshihiro Sumiyoshi, and Yasuki Endo Graduate School of Arts and Sciences,
The Common Chlorine Nuclear Electric Quadrupole Coupling Tensor for Acyl Chlorides R. A. Powoski and S. A. Cooke.
Rotational Spectra and Structure of PhenylacetyleneH2S complex
Max Planck Institute for the Structure and Dynamics of Matter
Rotational spectra of C2D4-H2S, C2D4-D2S, C2D4-HDS and 13CH2CH2-H2S complexes: Molecular symmetry group analysis Mausumi Goswami and E. Arunan Inorganic.
ROTATIONAL SPECTROSCOPY OF THE METHYL GLYCIDATE-WATER COMPLEX
MICROWAVE OBSERVATION OF THE O2-CONTAINING COMPLEX, O2-HCl
Department of Chemistry *Department of Chemistry, Mt. Holyoke College,
CAVITY AND CHIRPED PULSE ROTATIONAL SPECTRUM OF THE LASER ABLATION SYNTHESIZED, OPEN-SHELL MOLECULE TIN MONOCHLORIDE, SnCl G. S. GRUBBS II, DANIEL J. FROHMAN,
72nd International Symposium on Molecular Spectroscopy (ISMS 2017)
Mark D. Marshall, Helen O. Leung, Craig J. Nelson & Leonard H. Yoon
STEPHEN G. KUKOLICH, MING SUN, ADAM M. DALY University of Arizona
MICROWAVE FREQUENCY TRANSITIONS REQUIRING LASER ABLATED URANIUM METAL DISCOVERED USING CHIRP-PULSE FOURIER TRANSFORM MICROWAVE SPECTROSCOPY B. E. Long.
G. S. Grubbs II*, S. A. Cooke⧧, and Stewart E. Novick*,
Jacob T. Stewart and Bradley M
MICROWAVE OBSERVATION OF THE VAN DER WAALS COMPLES O2-CO
CHIRPED PULSE AND CAVITY FOURIER TRANSFORM MICROWAVE (CP-FTMW AND FTMW) INVESTIGATIONS INTO 3-BROMO-1,1,1,2,2-PENTAFLUOROPROPANE; A MOLECULE OF ATMOSPHERIC.
3-Dimensional Intermolecular Potential Energy Surface of Ar-SH(2Pi)
Daniel Zaleski,a John Mullaney,a Nicholas Walkera and Anthony Legonb
FT Microwave and MMW Spectroscopy of the H2-DCN Molecular Complex
The Effect of Protic Acid Identity on the Structures of Complexes with Vinyl Chloride: Fourier Transform Microwave Spectroscopy and Molecular Structure.
CHIRPED-PULSE FOURIER TRANSFORM MICROWAVE SPECTROSCOPY OF
Department of Chemistry
CAITLIN BRAY CARA RAE RIVERA E. A. ARSENAULT DANIEL A. OBENCHAIN
Microwave spectra of 1- and 2-bromobutane
Mahdi Kamaee and Jennifer van Wijngaarden
THE STRUCTURE OF PHENYLGLYCINOL
Angela Y. Chung, Eric A. Arsenault, and Stewart E. Novick
Fourier transform microwave spectra of n-butanol and isobutanol
Terahertz VRT Spectroscopy of the Water Tetramer-d8: Combined Analysis of Vibrational Bands at 4.1 THz and 2.0 THz Wei Lin, Jia-xiang Han, Lynelle K.
RH12, 70th International Symposium on Molecular Spectroscopy
THE STUDY OF ACENAPHTHENE AND ITS COMPLEXATION WITH WATER
Fourier Transform Emission Spectroscopy of CoH and CoD
Methylindoles – Microwave Spectroscopy
Nuclear Quadrupole Coupling in SiH2I2 Due to the Presence of Two Iodine Nuclei Discuss the Structural resolution of di-iodosilane using predictive methods.
ANH T. LE, GREGORY HALL, TREVOR SEARSa Department of Chemistry
ASSIGNMENT OF THE PERFLUOROPROPIONIC ACID-FORMIC ACID COMPLEX AND THE DIFFICULTIES OF INCLUDING HIGH Ka TRANSITIONS Daniel A. Obenchain, Eric A. Arsenault,
Wei Lin, Anan Wu, Zin Lu, Daniel A. Obenchain, Stewart E. Novick
Michal M. Serafin, Sean A. Peebles
and analysis of hyperfine structure from four quadrupolar nuclei
THE MICROWAVE SPECTRUM AND UNEXPECTED STRUCTURE OF THE BIMOLECULAR COMPLEX FORMED BETWEEN ACETYLENE AND (Z)-1-CHLORO-2-FLUOROETHYLENE Nazir D. Khan, Helen.
Presentation transcript:

Daniel A. Obenchain, Derek S. Frank, Stewart E. Novick, The Position of Deuterium in HOD-N2O as Determined by Structural and Nuclear Quadrupole Coupling Constants Daniel A. Obenchain, Derek S. Frank, Stewart E. Novick, William Klemperer

Previous Microwave Study J. Chem. Phys. 97, 2861 (1992)

Previous Microwave Study MBER experiment Measured deuterium isotopologues Could not fully resolve the 14N hyperfine splitting Details the internal motion of water in the complex, and compares it to the iso-electronic H2O-CO2 complex

Spring/Summer 2014 Michel Herman Bill Klemperer Stew Novick

A More Recent Study

Reported Constants from 1992 study aZolandz, D.; Yaron, D.; Peterson, K. I.; Klemperer, W. Journal of Chemical Physics 1992, 97, 2861.

Where is the deuterium in HOD-N2O? or Quasi-Parallel Quasi-Perpendicular

Experiment Balle-Flygare Fourier transform microwave spectrometer 6-18GHz 1.5% N2O in 1.0-1.2 at Ar was bubbled through a sample of water H2O and D2O were combined to produce a 1:2:1 mixture of H2O:HDO:D2O

212 – 111 Transition of HOD···N2O Splitting from 4 sources Doppler doubling 1 deuterium quadrupolar nucleus 2 nitrogen quadrupolar nuclei

Parameters for H2O-N2O Previous MW Studya This Work State A State B A (MHz) 12622.595(203) 12605.001(77) 12621.798(1) 12604.5274(9) B (MHz) 4437.422(47) 4437.978(32) 4437.2542(7) 4437.5038(6) C (MHz) 3264.962(47) 3264.302(32) 3264.3845(5) 3264.7369(3) ΔJ (kHz) 30.8(12) 23.35(4) 23.61(3) ΔJK (kHz) 243.0(32) 284.6(2) 283.1(1) ΔK (kHz) 350 -206.6(6) -213.4(3) δJ (kHz) 8.6(3) 8.04(1) 8.685(9) δK (kHz)d 224.2(76) - χaa 14Ninner (kHz) 128(45)a 57(5) 65(3) χbb 14Ninner (kHz) -226(6) -235(3) χcc 14Ninner (kHz) 168(8) 169(4) χaa 14Nouter (kHz) 371 (130)a 346(3) 344(2) χbb 14Nouter (kHz) -807(6) -782(3) χ­­cc 14Nouter (kHz) 461(6) 438(4) N (lines) 66 58 RMS (kHz)f 4.8 2.2 aZolandz, D.; Yaron, D.; Peterson, K. I.; Klemperer, W. Journal of Chemical Physics 1992, 97, 2861.

HOD-N2O Hyperfine Constants HDO-NNO HDO-N15NO HDO-15NNO χaa 14Ninner (kHz) - 54(3) χbb 14Ninner (kHz) -279(9) χcc 14Ninner (kHz) 225(9) χaa 14Nouter (kHz) 319(3) χbb 14Nouter (kHz) -755(6) χcc 14Nouter (kHz) 436(6) χaa D (kHz) -107(6) -103(19) χbb D (kHz) 261(9) 251(31) χcc D (kHz) -154(11) -148(37)

HOD-N2O Hyperfine Constants HDO-NNO HDO-N15NO HDO-15NNO χaa 14Ninner (kHz) 53(7) - 54(3) χbb 14Ninner (kHz) -235(10) -279(9) χcc 14Ninner (kHz) 181(12) 225(9) χaa 14Nouter (kHz) 332(3) 319(3) χbb 14Nouter (kHz) -762(4) -755(6) χcc 14Nouter (kHz) 430(5) 436(6) χaa D (kHz) -95(6) -107(6) -103(19) χbb D (kHz) 230(9) 261(9) 251(31) χcc D (kHz) -134(11) -154(11) -148(37)

The 212 - 111 transition for HDO-14N14NO J + IN,inner = F1 F1 + IN,outer = F2, F2 + ID = F F1’, F2’, F’ – F1’’, F2’’, F’’

HDO-N2O constants Previous MW Studya Previous IR Studyb This work HDO-NNO HDO-N15NO HDO-15NNO A (MHz) 12512.417(158) 12512.939(294) 12512.583(1) 12533.0(1) 12149.11(6) B (MHz) 4267.344(41) 4267.653(84) 4267.057(1) 4238.978(1) 4221.5366(5) C (MHz) 3166.356(41) 3166.231(92) 3166.6575(5) 3150.925(1) 3118.2372(5) ΔJ (kHz) 26(2) 34.0(8) 22.18(6) 17.6(1) 18.87(5) ΔJK (kHz) 157(19) 256(20) 207.1(2) [207.0] ΔK (kHz) -111(31) -23(57) -115.9(7) [-115.4] δJ (kHz) 12.4(48) 11.0(4) 7.05(2) [7.06] δK (kHz) 123(32) 125(22) - N (lines) 12 98 13 15 RMS (kHz)6 181 5.2 4.5 0.8 aZolandz, D.; Yaron, D.; Peterson, K. I.; Klemperer, W. Journal of Chemical Physics 1992, 97, 2861. bFoldes, T.; Lauzin, C.; Vanfleteren, T.; Herman, M.; Lievin, J.; Didriche, K. Molecular Physics 2015, 113, 473.

Kraitchman Coordinate Determination From Data in Originala This Experiment ab initio |a| |b| a b H perpendicular 2.7257(5) 0.5797(5) 2.8 -0.4 H parallel 2.0949(7) 0.5703(7) 2.0929(5) 0.568(3) 1.9 0.8 N inner   0.921(2) 0.260(6)i -0.9 0.0 N outer 1.115(2) 1.118(1) -1.2 -1.1 a b aZolandz, D.; Yaron, D.; Peterson, K. I.; Klemperer, W. Journal of Chemical Physics 1992, 97, 2861.

rm(2) Structure of H2O-N2O

HOD Quadrupole Tensor a b D H Quadrupole tensor of D in DOH from Puzzarini (units in kHz) χ = 277.2(15) 114.7 -105.6(35) -171.6(35) Thaddeus, P.; Loubser, J. H. N.; Krisher, L. C. Journal of Chemical Physics 1964, 40, 257 Cazzoli, G. L., V.; Puzzarini, C. Gauss, J. In 69th International Symposium on Molecular Spectroscopy Champaign-Urbana, 2014 Puzzarini, C., hf parameters of HD(16)O, Private Communication

Rotation To Experimenal Values b a b D H Quadrupole tensor of D in DOH from Puzzarini (units in kHz) χ = 277.2(15) 114.7 -105.6(35) -171.6(35) Quadrupole tensor of D in DOH-NNO from this work (units in kHz) χ = -95(6) 230(9) -134(11) Rotation that reproduce experimental DOH-N2O (units in kHz) Rotation angles χ = -94 -126 38 φ = -87.4° 230 -120 θ = -16.7° -136 χ = 0°

Rotation to the Perpendicular Position Rotation to the parallel position (units in kHz) χ = -94 230 -136 Quadrupole tensor of D in DOH from Puzzarini (units in kHz) χ = 277.2(15) 114.7 -105.6(35) -171.6(35) a' b a b D H Rotation to the perpendicular position (units in kHz) χ = 275 -103 -172

Observation of Perpendicular Deuterium Herman and co-workers found a local minimum in their ab initio studies for the deuterium in the perpendicular position 7 cm-1 higher in energy than deuterium in the parallel position Searches completed using the isotopic shifts from the rm(2) structure as a starting point No lines found as of yet a b H D

Conclusion In the HOD-N2O complex measured in by Klemperer in 1992, the measured structure was that of a deuterium occupying the quasi- parallel position Conformation by structure fit and quadrupole tensor analysis

Acknowledgements Michel Herman and his collaborators at Université Libre de Bruxelles Cristina Puzzarini at the Università di Bologna NSF CNS-0619508 for cluster funding at Wesleyan The Novick/Pringle/Cooke Group members