Page ) Sin: –0.9511; Cos: –0.3090, Tan: Quadrant III 17)

Slides:



Advertisements
Similar presentations
1.5 Using the Definitions of the Trigonometric Functions OBJ: Give the signs of the six trigonometric functions for a given angle OBJ: Identify the quadrant.
Advertisements

Section 5.2 Trigonometric Functions of Real Numbers Objectives: Compute trig functions given the terminal point of a real number. State and apply the reciprocal.
Trigonometric Functions Let (x, y) be a point other then the origin on the terminal side of an angle  in standard position. The distance from.
1 7.3 Evaluating Trig Functions of Acute Angles In this section, we will study the following topics: Evaluating trig functions of acute angles using right.
Section 5.3 Trigonometric Functions on the Unit Circle
Section 1.4 Trigonometric Functions an ANY Angle Evaluate trig functions of any angle Use reference angles to evaluate trig functions.
Reciprocal functions secant, cosecant, cotangent Secant is the reciprocal of cosine. Reciprocal means to flip the ratio. Cosecant is the reciprocal of.
EXAMPLE 1 Evaluate trigonometric functions given a point Let (–4, 3) be a point on the terminal side of an angle θ in standard position. Evaluate the six.
Trigonometry Section 8.4 Simplify trigonometric expressions Reciprocal Relationships sin Θ = cos Θ = tan Θ = csc Θ = sec Θ = cot Θ = Ratio Relationships.
4.3 Right Triangle Trigonometry Objective: In this lesson you will learn how to evaluate trigonometric functions of acute angles and how to use the fundamental.
Pythagorean Identities Unit 5F Day 2. Do Now Simplify the trigonometric expression: cot θ sin θ.
Do Now  .
Pythagorean Theorem Algebra 2/Trig Name __________________________
Chapter 13: Trigonometric and Circular Functions
Basic Trigonometry An Introduction.
The Other Trigonometric Functions
Trigonometric Identities and Equations
Section 5.1A Using Fundamental Identities
DOUBLE-ANGLE AND HALF-ANGLE FORMULAS
Section 1.3 Reference Angles.
Warm Up Find the reciprocal of each integer:
Pre-Calc: 4.2: Trig functions: The unit circle
Evaluating Angles.
Warm Up Use trigonometric identities to simplify: csc ∙tan
UNIT CIRCLE THE.
1.4 Trigonometric Functions of Any Angle
14.3 Trigonometric Identities
9.1: Identities and Proofs
Reference Angles & Unit Circle
Section 5.1: Fundamental Identities
Evaluating Trigonometric Functions
Lesson 6.5/9.1 Identities & Proofs
Evaluating Trigonometric Functions for any Angle
Lesson 4.4 Trigonometric Functions of Any Angle
Mrs. Volynskaya Pre-Calculus Chapter 4 Trigonometry
Trig Functions: the unit circle approach
Worksheet Key 12/2/ :28 PM 13.3: The Unit Circle.
Define General Angles and Radian Measure
Pythagorean Identities
5 Trigonometric Functions Copyright © 2009 Pearson Addison-Wesley.
Trigonometric Functions: The Unit Circle (Section 4-2)
What You Should Learn Evaluate trigonometric functions of any angle
Trigonometry Terms Radian and Degree Measure
Unit 7B Review.
Solving Through Factoring
8.1: Graphical Solutions of Trig Functions
Unit #6: Graphs and Inverses of Trig Functions
Graphs of Secant, Cosecant, and Cotangent
Graph of Secant, Cosecant, and Cotangent
I II III IV Sin & csc are + Sin & csc are + Cos & sec are +
Trigonometric Functions: Unit Circle Approach
Pre-Calculus PreAP/Dual, Revised ©2014
Trig. Ratios in a Coordinate System
Evaluating Angles.
Circular Trigonometric Functions.
Build and Use Unit Circle
6.4 - Trig Ratios in the Coordinate Plane
DAY 61 AGENDA: DG minutes.
5-4: Trig Identities Name:_________________ Hour: ________
Trig Functions of Any Angle
Double Angle Identities
Day 49 Agenda: DG minutes.
Review for test Front side ( Side with name) : Odds only Back side: 1-17 odd, and 27.
Getting ready for Pre-Calculus class.
Analytic Trigonometry
Academy Algebra II THE UNIT CIRCLE.
Quick Integral Speed Quiz.
Page ) y = 6, DE = 7, FG = 8 13) x = 4.2, JL = 14.2, MN = 13 14)
The Circular Functions (The Unit Circle)
Given A unit circle with radius = 1, center point at (0,0)
Presentation transcript:

Page 452 15) Sin: –0.9511; Cos: –0.3090, Tan: 3.0777 Quadrant III 17) 1) sin t: 𝟕 𝟓𝟑 𝟓𝟑 , cos t: 𝟐 𝟓𝟑 𝟓𝟑 , tan t: 𝟕 𝟐 csc t: 𝟓𝟑 𝟕 , sec t: 𝟓𝟑 𝟐 , cot t: 𝟐 𝟕 3) sin t: − 𝟔 𝟔𝟏 𝟔𝟏 , cos t: − 𝟓 𝟔𝟏 𝟔𝟏 , tan t: 𝟔 𝟓 csc t: − 𝟔𝟏 𝟔 , sec t: − 𝟔𝟏 𝟓 , cot t: 𝟓 𝟔 5) sin t: − 𝟏𝟎 𝟏𝟎𝟑 𝟏𝟎𝟑 , cos t: − 𝟑𝟎𝟗 𝟏𝟎𝟑 , tan t: − 𝟏𝟎 𝟑 𝟑 csc t: − 𝟏𝟎𝟑 𝟏𝟎 , sec t: − 𝟑𝟎𝟗 𝟑 , cot t: − 𝟑 𝟏𝟎 7) sin t: 𝟓 𝟓 , cos t: − 𝟐 𝟓 𝟓 , tan t: − 𝟏 𝟐 csc t: − 𝟓 , sec t: − 𝟓 𝟐 , cot t: −𝟐 9) sin t: − 𝟒 𝟓 , cos t: − 𝟑 𝟓 , tan t: 𝟒 𝟑 csc t: − 𝟓 𝟒 , sec t: − 𝟓 𝟑 , cot t: 𝟑 𝟒 15) Sin: –0.9511; Cos: –0.3090, Tan: 3.0777 Quadrant III 17) Sin: 0.9848; Cos: 0.1736, Tan: 5.6713 Quadrant I 19) Sin: –0.8660; Cos: –0.5, Tan: 1.7321 21) Sin: –1; Cos: 0, Tan: undefined Y-axis 23) Sin: 0.9614; Cos: –0.2752, Tan: –3.4939 Quadrant II 4/23/2019 1:22 AM 6.4B - The Unit Circle

4/23/2019 1:22 AM 6.4B - The Unit Circle

Pre-Calculus PreAP/Dual, Revised ©2014 The Unit Circle Section 6.4B Pre-Calculus PreAP/Dual, Revised ©2014 viet.dang@humble.k12.tx.us 4/23/2019 1:22 AM 6.4B - The Unit Circle

Review sin Ѳ = csc Ѳ = cos Ѳ = sec Ѳ = tan Ѳ = cot Ѳ = 4/23/2019 1:22 AM 6.4B - The Unit Circle

Reciprocal Identities Theorem sin θ= csc θ= cos θ= sec θ= tan θ= cot θ= 4/23/2019 1:22 AM 6.4B - The Unit Circle

Right Triangles – 45°, 45°, 90° 45-45-90 triangles (Drawing not to scale) Radius = 1 4/23/2019 1:22 AM 6.4B - The Unit Circle

Right Triangles – 30°, 60°, 90° 30-60-90 triangles (Drawing not to scale) Radius = 1 4/23/2019 1:22 AM 6.4B - The Unit Circle

Reminder 4/23/2019 1:22 AM 6.4B - The Unit Circle

The Unit Circle Activity 4/23/2019 1:22 AM 6.4B - The Unit Circle

The Unit Circle 4/23/2019 1:22 AM 6.4B - The Unit Circle

The Unit Circle 4/23/2019 1:22 AM 6.4B - The Unit Circle

The Unit Circle: π/4 Family cos Ѳ sin Ѳ Reference Angle: 45° π/4 45° 3π/4 135° 5π/4 225° 7π/4 315° Reference Angle: 45° π/4 45° √2/2 3π/4 135° –√2/2 5π/4 225° 7π/4 315° 4/23/2019 1:22 AM 6.4B - The Unit Circle

The Unit Circle: π/6 Family cos Ѳ sin Ѳ Reference Angle: 30° π/6 30° 5π/6 150° 7π/6 210° 11π/6 330° Reference Angle: 30° π/6 30° √3/2 1/2 5π/6 150° –√3/2 7π/6 210° –1/2 11π/6 330° 4/23/2019 1:22 AM 6.4B - The Unit Circle

The Unit Circle: π/3 Family cos Ѳ sin Ѳ Reference Angle: 60° π/3 60° 2π/3 120° 4π/3 240° 5π/3 300° Reference Angle: 60° π/3 60° 1/2 √3/2 2π/3 120° –1/2 4π/3 240° –√3/2 5π/3 300° 4/23/2019 1:22 AM 6.4B - The Unit Circle

Example 1 Solve cos 45° without a calculator 4/23/2019 1:22 AM 6.4B - The Unit Circle

Example 2 Solve sin π/4 without a calculator 4/23/2019 1:22 AM 6.4B - The Unit Circle

Example 3 Solve cos 7π/4 without a calculator 4/23/2019 1:22 AM 6.4B - The Unit Circle

Example 4 Solve tan 7π/4 without a calculator 4/23/2019 1:22 AM 11-8: The Unit Circle

Your Turn Solve tan 9π/4 without a calculator 4/23/2019 1:22 AM 11-8: The Unit Circle

Example 5 Solve sin π/6 without a calculator 4/23/2019 1:22 AM 6.4B - The Unit Circle

Example 6 Solve tan 11π/6 without a calculator 4/23/2019 1:22 AM 6.4B - The Unit Circle

Example 7 Solve tan –π/3 without a calculator 4/23/2019 1:22 AM 6.4B - The Unit Circle

Your Turn Solve tan 2π/3 without a calculator 4/23/2019 1:22 AM 6.4B - The Unit Circle

Example 8 Solve sec 7π/4 without a calculator 4/23/2019 1:22 AM 6.4B - The Unit Circle

Example 9 Solve csc 4π/3 without a calculator 4/23/2019 1:22 AM 6.4B - The Unit Circle

Example 10 Solve cot 11π/6 without a calculator 4/23/2019 1:22 AM 6.4B - The Unit Circle

Your Turn Solve csc –11π/6 without a calculator 4/23/2019 1:22 AM 6.4B - The Unit Circle

Example 11 Solve cot π/2 without a calculator 4/23/2019 1:22 AM 6.4B - The Unit Circle

Example 12 Solve tan π/2 without a calculator 4/23/2019 1:22 AM 6.4B - The Unit Circle

Your Turn Solve cot 4π without a calculator 4/23/2019 1:22 AM 6.4B - The Unit Circle

Example 13 Write the expression without any decimals, 𝐬𝐢𝐧 𝝅 𝟔 𝐜𝐨𝐬 𝝅 𝟐 − 𝐜𝐨𝐬 𝝅 𝟔 𝐬𝐢𝐧 𝝅 𝟐 4/23/2019 1:22 AM 6.4B - The Unit Circle

Example 14 Write the expression without any decimals, 𝐬𝐢𝐧 𝟕𝝅 𝟑 𝐜𝐨𝐬 𝟓𝝅 𝟒 + 𝐜𝐨𝐬 𝟕𝝅 𝟑 𝐬𝐢𝐧 𝟓𝝅 𝟒 4/23/2019 1:22 AM 6.4B - The Unit Circle

Your Turn Write the expression without any decimals, 𝐜𝐨𝐬 𝟑𝝅 𝟒 𝐬𝐢𝐧 𝟓𝝅 𝟔 − 𝐬𝐢𝐧 𝟕𝝅 𝟑 𝐜𝐨𝐬 𝟓𝝅 𝟔 4/23/2019 1:22 AM 6.4B - The Unit Circle

Assignment Unit Circle Worksheet 1 4/23/2019 1:22 AM 6.4B - The Unit Circle