Objective Solve inequalities that contain more than one operation.

Slides:



Advertisements
Similar presentations
Warm Up Solve each equation. 1. 2x = 7x x = –3
Advertisements

Warm Up Solve each equation. 1. 2x – 5 = –17 2. –6 14
Objective Solve inequalities that contain more than one operation.
Multi-Step Inequalities
Holt McDougal Algebra Solving Inequalities with Variables on Both Sides Solve inequalities that contain variable terms on both sides. Objective.
Solving Inequalities with Variables on Both Sides
Let w represent an employee’s wages.
Graph each inequality. Write an inequality for each situation. 1. The temperature must be at least –10°F. 2. The temperature must be no more than 90°F.
Multi-Step Inequalities
Warm Up Lesson Presentation Lesson Quiz.
Solving Multi-Step Inequalities Section 2.4. Warm Up Solve each equation. 1. 2x – 5 = –17 2. Solve each inequality and graph the solutions
Holt McDougal Algebra Solving Two-Step and Multi-Step Inequalities Solve inequalities that contain more than one operation. Objective.
Warm Up Solve each equation. 1. 2x – 5 = –17 2. –6 14
Solving Two-Step and 3.1 Multi-Step Equations Warm Up
Holt McDougal Algebra 1 Solving Inequalities with Variables on Both Sides 4m – 3 < 2m + 6 To collect the variable terms on one side, subtract 2m from both.
Solve inequalities that contain more than one operation.
Holt Algebra Solving Inequalities with Variables on Both Sides Solve inequalities that contain variable terms on both sides. Objective.
Solving Two-Step and Multi-Step Equations Warm Up Lesson Presentation
Warm-up #12 ab 1 3x  1814x  x > 32-5x < x  -3 7x > x < x  -24.
3-4 Solving Two-Step and Multi-Step Inequalities Warm Up Warm Up Lesson Presentation Lesson Presentation California Standards California StandardsPreview.
Solving Inequalities with Variables on Both Sides
Solving Multi-Step Inequalities
Multi-Step Inequalities
Multi-Step Inequalities
Multi-Step Inequalities
Solving Two-Step Equations
Preview Warm Up California Standards Lesson Presentation.
Solving Inequalities with Variables on Both Sides
Solving Inequalities with Variables on Both Sides
Solving Inequalities with Variables on Both Sides
Warm Up Solve each equation. 1. 2x = 7x (p – 1) = 3p + 2.
Solving Inequalities with Variables both Sides.
Objectives: Solve two step and multi-step inequalities.
Objective Solve equations in one variable that contain more than one operation.
Solving Inequalities with Variables on Both Sides
Warm Up Solve each equation. 1. 2x = 7x x = –3
Multi-Step Inequalities
Objective Solve equations in one variable that contain variable terms on both sides.
Graphing and Writing Inequalities
Multi-Step Inequalities
Solving Two-Step and Multi -Step Inequalities
Solving Multi-Step Equations
Objective The student will be able to:
Objective Solve inequalities that contain variable terms on both sides.
Solving Inequalities with Variables on Both Sides
Lesson Objective: I will be able to …
Example 1A: Solving Multi-Step Inequalities
Multi-Step Inequalities
Objective Solve equations in one variable that contain more than one operation.
Example 1A: Solving Inequalities with Variables on Both Sides
Objective Solve inequalities that contain variable terms on both sides.
Objective Solve equations in one variable that contain variable terms on both sides.
Lesson Objective: I will be able to …
Warm Up Solve each equation. 1. 2x – 5 = –17 2. –6 14
Multi-Step Inequalities
Objective Solve equations in one variable that contain more than one operation.
Multi-Step Inequalities
Multi-Step Inequalities
Objective Solve equations in one variable that contain more than one operation.
Solving Inequalities with Variables on Both Sides
Multi-Step Inequalities
Solving Inequalities with Variables on Both Sides
Algebra 1 10/17/16 EQ: How do I solve 2 and multi step inequalities?
Multi-Step Inequalities
Warm Up Solve each equation. 1. 2x – 5 = –17 2. –6 14
Multi-Step Inequalities
Skill Check Lesson Presentation Lesson Quiz.
Multi-Step Inequalities
Multi-Step Inequalities
Solving Inequalities with Variables on Both Sides
Presentation transcript:

Objective Solve inequalities that contain more than one operation.

Example 1A: Solving Multi-Step Inequalities Solve the inequality and graph the solutions. 45 + 2b > 61 Since 45 is added to 2b, subtract 45 from both sides to undo the addition. 45 + 2b > 61 –45 –45 2b > 16 Since b is multiplied by 2, divide both sides by 2 to undo the multiplication. b > 8 2 4 6 8 10 12 14 16 18 20

Example 1B: Solving Multi-Step Inequalities Solve the inequality and graph the solutions. 8 – 3y ≥ 29 Since 8 is added to –3y, subtract 8 from both sides to undo the addition. 8 – 3y ≥ 29 –8 –8 –3y ≥ 21 Since y is multiplied by –3, divide both sides by –3 to undo the multiplication. Change ≥ to ≤. y ≤ –7 –10 –8 –6 –4 –2 2 4 6 8 10 –7

Solve the inequality and graph the solutions. Check It Out! Example 1a Solve the inequality and graph the solutions. –12 ≥ 3x + 6 Since 6 is added to 3x, subtract 6 from both sides to undo the addition. –12 ≥ 3x + 6 – 6 – 6 –18 ≥ 3x Since x is multiplied by 3, divide both sides by 3 to undo the multiplication. –6 ≥ x –10 –8 –6 –4 –2 2 4 6 8 10

Solve the inequality and graph the solutions. Check It Out! Example 1b Solve the inequality and graph the solutions. Since x is divided by –2, multiply both sides by –2 to undo the division. Change > to <. –5 –5 x + 5 < –6 Since 5 is added to x, subtract 5 from both sides to undo the addition. x < –11 –20 –12 –8 –4 –16 –11

Solve the inequality and graph the solutions. Check It Out! Example 1c Solve the inequality and graph the solutions. Since 1 – 2n is divided by 3, multiply both sides by 3 to undo the division. 1 – 2n ≥ 21 Since 1 is added to −2n, subtract 1 from both sides to undo the addition. –1 –1 –2n ≥ 20 Since n is multiplied by −2, divide both sides by −2 to undo the multiplication. Change ≥ to ≤. n ≤ –10 –10 –20 –12 –8 –4 –16

Example 2A: Simplifying Before Solving Inequalities Solve the inequality and graph the solutions. 2 – (–10) > –4t 12 > –4t Combine like terms. Since t is multiplied by –4, divide both sides by –4 to undo the multiplication. Change > to <. –3 < t (or t > –3) –3 –10 –8 –6 –4 –2 2 4 6 8 10

Example 2B: Simplifying Before Solving Inequalities Solve the inequality and graph the solutions. –4(2 – x) ≤ 8 −4(2 – x) ≤ 8 Distribute –4 on the left side. −4(2) − 4(−x) ≤ 8 Since –8 is added to 4x, add 8 to both sides. –8 + 4x ≤ 8 +8 +8 4x ≤ 16 Since x is multiplied by 4, divide both sides by 4 to undo the multiplication. x ≤ 4 –10 –8 –6 –4 –2 2 4 6 8 10

Solve the inequality and graph the solutions. Check It Out! Example 2a Solve the inequality and graph the solutions. 2m + 5 > 52 Simplify 52. 2m + 5 > 25 – 5 > – 5 Since 5 is added to 2m, subtract 5 from both sides to undo the addition. 2m > 20 m > 10 Since m is multiplied by 2, divide both sides by 2 to undo the multiplication. 2 4 6 8 10 12 14 16 18 20

Solve the inequality and graph the solutions. Check It Out! Example 2b Solve the inequality and graph the solutions. 3 + 2(x + 4) > 3 Distribute 2 on the left side. 3 + 2(x + 4) > 3 3 + 2x + 8 > 3 Combine like terms. 2x + 11 > 3 Since 11 is added to 2x, subtract 11 from both sides to undo the addition. – 11 – 11 2x > –8 Since x is multiplied by 2, divide both sides by 2 to undo the multiplication. x > –4 –10 –8 –6 –4 –2 2 4 6 8 10

daily cost at We Got Wheels Example 3: Application To rent a certain vehicle, Rent-A-Ride charges $55.00 per day with unlimited miles. The cost of renting a similar vehicle at We Got Wheels is $38.00 per day plus $0.20 per mile. For what number of miles in the cost at Rent-A-Ride less than the cost at We Got Wheels? Let m represent the number of miles. The cost for Rent-A-Ride should be less than that of We Got Wheels. Cost at Rent-A-Ride must be less than daily cost at We Got Wheels plus $0.20 per mile times # of miles. 55 < 38 + 0.20  m

Example 3 Continued 55 < 38 + 0.20m Since 38 is added to 0.20m, subtract 38 from both sides to undo the addition. –38 –38 55 < 38 + 0.20m 17 < 0.20m Since m is multiplied by 0.20, divide both sides by 0.20 to undo the multiplication. 85 < m Rent-A-Ride costs less when the number of miles is more than 85.

Lesson Quiz: Part I Solve each inequality and graph the solutions. 1. 13 – 2x ≥ 21 x ≤ –4 2. –11 + 2 < 3p p > –3 3. 23 < –2(3 – t) t > 7 4.

Lesson Quiz: Part II 5. A video store has two movie rental plans. Plan A includes a $25 membership fee plus $1.25 for each movie rental. Plan B costs $40 for unlimited movie rentals. For what number of movie rentals is plan B less than plan A? more than 12 movies